Skip to main content
Log in

Dynamic and wave propagation analysis of periodic smart beams coupled with resonant shunt circuits: passive property modulation

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The present study deals with analyzing the dynamic behavior of a smart beam coupled with piezoelectric materials in the unimorph and bimorph configurations connected to resonant shunt circuits. The resonant shunt circuit connection is applied to promote and passively modulate the vibration and flexural wave propagation attenuation. A Spectral Element Method (SEM)-based approach for the periodic smart structure is developed that is capable of efficiently analyzing various configurations of periodicity and piezoelectric attachments in a generic framework. The wave attenuation is obtained based on the Transfer Matrix Method (TMM). Numerical analyses reveal that the effective wavenumber presents local attenuation behavior at the same frequencies of the vibration as per the shunt design, indicating the shunt circuit’s impedance associated with tuned frequency. The internal resonance characteristics of the resonant shunt circuits and their effects on the beam response are investigated in detail. The proposed periodic smart beam system along with the spectral element approach for analyzing the dynamics and wave propagation behavior of such systems, lays out further potential avenues for designing more complex configurations of smart structures and multifunctional metamaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. B. Yan, K. Wang, Z. Hu, C. Wu, X. Zhang, Shunt damping vibration control technology: a review. Appl. Sci. 7(5), 494 (2017)

    Article  Google Scholar 

  2. D.J. Leo, Engineering Analysis of Smart Material Systems (Wiley, New Jersey, 2007), pp. 1–7

    Book  Google Scholar 

  3. C.H. Cheng, S.C. Chen, Z.X. Zhang, Y.C. Lin, Analysis and experiment for the deflection of a shear-mode PZT actuator. Smart Mater. Struct. 16, 230–236 (2007)

    Article  ADS  Google Scholar 

  4. A. Singh, T. Mukhopadhyay, S. Adhikari, B. Bhattacharya, Voltage-dependent modulation of elastic moduli in lattice metamaterials: emergence of a programmable state-transition capability. Int. J. Solids Struct. 208–209, 31–48 (2021)

    Article  Google Scholar 

  5. R.L. Forward, Electronic damping of vibrations in optical structures. J. Appl. Opt. 18(5), 690–697 (1979)

    Article  ADS  Google Scholar 

  6. J.A. Gripp, D.A. Rade, Vibration and noise control using shunted piezoelectric transducers: a review. Mech. Syst. Signal Process. 112, 359–383 (2018)

    Article  ADS  Google Scholar 

  7. F.A. Viana, J.V. Steffen, Multimodal vibration damping through piezoelectric patches and optimal resonant shunt circuits. J. Braz. Soc. Mech. Sci. Eng. 2006, 293–310 (2006)

    Article  Google Scholar 

  8. N.W. Hagood, A.V. Flotow, Damping of structural vibrations with piezoelectric materials and passive electrical networks. J. Sound Vib. 146(2), 243–268 (1991)

    Article  ADS  Google Scholar 

  9. L. Airoldi, M. Ruzzene, Design of tunable acoustic metamaterials through periodic arrays of resonant shunted piezos. New J. Phys. 13, 113010 (2011)

    Article  ADS  Google Scholar 

  10. C.L. Davis, G.A. Lesieutre, An actively tuned solid-state vibration absorber using capacitive shunting of piezoelectric stiffness. J. Sound Vib. 232, 601–617 (2000)

    Article  ADS  Google Scholar 

  11. S.-Y. Wu, Piezoelectrics shunts with a parallel r-l circuit for structural damping and vibration control. in Symposium on Smart Structures and Materials (San Diego), (2020), pp. 259–269

  12. J.J. Hollkamp, Multimodal passive vibration suppression with piezoelectric materials and resonant shunts. J. Intel. Mat. Syst Str. 5, 49–57 (1994). https://doi.org/10.1177/1045389X9400500106

    Article  Google Scholar 

  13. J.J. Hollkamp, R.W. Gordon, An experimental comparison of piezoelectric and constrained layer damping. Smart Mater. Struct. 5, 715–722 (1996)

    Article  ADS  Google Scholar 

  14. C.H. Park, Vibration control of beams with negative capacitive shunting of interdigital electrode piezoceramics. J. Vib. Control 11, 331–46 (2005)

    Article  Google Scholar 

  15. J. B. Min, K. P. Duffy, A. J. Provenza, Shunted piezoelectric vibration damping analysis including centrifugal loading effects. https://ntrs.nasa.gov/citations/20110016111 (2011)

  16. K. Marakakis, G.K. Tairidis, P. Koutsianitis, G.E. Stavroulakis, Shunt piezoelectric systems for noise and vibration control: a review. Front. Built Env. 5, 64 (2019)

    Article  Google Scholar 

  17. M.I. Hussein, M.J. Leamy, M. Ruzzene, Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl. Mech. Rev. 66(4), 40802 (2014)

    Article  Google Scholar 

  18. S. Gonella, M. Ruzzene, Homogenisation of vibrating periodic lattice structures. Appl. Math. Model. 32, 459–482 (2008)

    Article  MathSciNet  Google Scholar 

  19. M. Neubauer, J.E. Wallschek, Vibration damping with shunted piezoceramics: fundamentals and technical applications. Mech. Syst. Signal Process. 2013, 36–52 (2013)

    Article  ADS  Google Scholar 

  20. A. Sénéchal, Réduction de vibrations de structure complexe par shunts piézoélectriques : application aux turbomachines. Doctoral Thesis, Conservatoire national des arts et metiers - CNAM. Français (2011)

  21. N. Sergey, N. ShevtsovSergey, A N. Shevtsov, A. N. Solovev, Helicopter rotor blade vibration control on the basis of active/passive piezoelectric damping approach, Conference: Physcon, Catania, Italy (2009)

  22. B. Seba, J. Ni, B. Lohmann, Vibration attenuation using a piezoelectric shunt circuit based on finite element method analysis. Smart Mater. Struct. 2006, 15–20 (2006)

    Google Scholar 

  23. J. Min, K. Duffy, A. Provenza, Shunted piezoelectric vibration damping analysis including centrifugal loading effects. 51st AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, Orlando, Florida (2010)

  24. S. Kazi, A. Assarry, M.Z.M. Zain, M. Mailah, M. e Hussein, Experimental implementation of smart glove incorporating piezoelectric actuator for hand tremor control. Wseas Trans. Syst. Control 5, 443–453 (2010)

    Google Scholar 

  25. F. Casadei, M. Ruzzene, L. Dozio, K. Cunefare, Broadband vibration control through periodic arrays of resonant shunts: experimental investigation on plates Smart Mater. Struct. 19, 015002 (2009)

    Google Scholar 

  26. C. Sugino, M. Ruzzene, A. Erturk, Design and analysis of piezoelectric metamaterial beams with synthetic impedance shunt circuits. IEEE/ASME Trans. Mechatron. 23–5, 2144–2155 (2018)

    Article  Google Scholar 

  27. C. Sugino, M. Ruzzene, A. Erturk, An analytical framework for locally resonant piezoelectric metamaterial plates. Int. J. Solids Struct. 182–183, 281–294 (2020)

    Article  Google Scholar 

  28. G. Wang, J. Cheng, J. Chen, Y. He, Multi-resonant piezoelectric shunting induced by digital controllers for subwavelength elastic wave attenuation in smart metamaterial. Smart Mater. Struct. 26, 2 (2017)

    Google Scholar 

  29. D. Casagrande, P. Gardonio, M. Zilletti, Smart panel with time-varying shunted piezoelectric patch absorbers for broadband vibration control. J. Sound Vib. 400, 288–304 (2017)

    Article  ADS  Google Scholar 

  30. Y.Y. Chen, G.L. Huang, C.T. Sun, Band gap control in an active elastic metamaterial with negative capacitance piezoelectric shunting. ASME. J. Vib. Acoust. 136(6), 061008 (2014)

    Article  Google Scholar 

  31. J.F. Doyle, Wave Propagation in Structures: A Spectral Analysis Approach, 2nd edn. (Springer, New York, 1997)

    Book  Google Scholar 

  32. U. Lee, Spectral Element Method in Structural Dynamics (Wiley, Singapore, 2009)

    Book  Google Scholar 

  33. M.R. Machado, S. Adhikari, J.M.C. Dos Santos, Spectral element-based method for a one-dimensional damaged structure with distributed random properties. J. Braz. Soc. Mech. Sci. Eng. 40(91), 415 (2018)

    Article  Google Scholar 

  34. M. Dutkiewicz, M.R. Machado, Measurements in situ and spectral analysis of wind flow effects on overhead transmission lines. Sound Vibr. 53(4), 161–175 (2019)

    Google Scholar 

  35. M. Dutkiewicz, M.R. Machado, Dynamic response of overhead transmission line in turbulent wind flow with application of the spectral element method. IOP Conf. Ser.: Mater. Sci. Eng. 471(524), 2019 (2019)

    Google Scholar 

  36. M. Machado, M. Dutkiewicz, C. Matt, D. Castello, Spectral model and experimental validation of hysteretic and aerodynamic damping in dynamic analysis of overhead transmission conductor. Mech. Syst. Signal Process. 136(1), 106483 (2020)

    Article  Google Scholar 

  37. S. Adhikari, T. Mukhopadhyay, X. Liu, Broadband dynamic elastic moduli of honeycomb lattice materials: a generalized analytical approach. Mech. Mater. 157, 103796 (2021)

    Article  Google Scholar 

  38. T. Mukhopadhyay, S. Adhikari, A. Alu, Theoretical limits for negative elastic moduli in subacoustic lattice materials. Phys. Rev. B 99, 094108 (2019)

    Article  ADS  Google Scholar 

  39. U. Lee, J. Kim, Dynamics of elastic-piezoelectric two-layer beams using spectral element method. Int. J. Solids Struct. 37, 4403–4417 (2000). https://doi.org/10.1016/S0020-7683(99)00154-7

    Article  MATH  Google Scholar 

  40. U. Lee, J. Kim, Spectral element modeling for the beams treated with active constrained layer damping. Int. J. Solids Struct. 38(32–33), 5679–5702 (2001)

    Article  Google Scholar 

  41. Z.-J. Wu, F.-M. Li, Dynamic properties of three-dimensional piezoelectric Kagome grids. Waves Random Compl. Media 25(3), 361–381 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  42. M.R. Machado, A.T. Fabro, B.B. Moura, Spectral element approach for flexural waves control in smart material beam with single and multiple resonant impedance shunt circuit. J. Comput. Nonlinear Dyn. 10(1115/1), 4047389 (2019)

    Google Scholar 

  43. M.R. Machado, A. Appert, L. Khalij, Spectral formulated modelling of an electrodynamic shaker. Mech. Res. Commun. 97, 70–78 (2019)

    Article  Google Scholar 

  44. B. Jaffe, R. Cook, H. Jaffe, Piezoelecfric Ceramics (Academic Press, New York, 1971)

    Google Scholar 

  45. M.A. Clementino, F. Nitzsche, C. De Marqui, Experimental verification of a semi-active piezoelectric pitch link for helicopter vibration attenuation, in 25th AIAA/AHS Adaptive Structures Conference (2017)

  46. W. Zhong, F. Williams, On the direct solution of wave propagation for repetitive structures. J. Sound Vib. 181, 485–501 (1995)

    Article  ADS  Google Scholar 

  47. B. B. Moura, M. R. Machado, Vibration control using piezoelectric connected with shunts circuits, in: WCCM-ECCOMAS2020. https://www.scipedia.com/public/Moura-Machado-2021a (2021)

Download references

Acknowledgements

TM would like to acknowledge the support received through the Science and Engineering Research Board (Grant no. SRG/2020/001398), India. M.R. Machado would like to acknowledge the support received through the Fundação de Apoio a Pesquisa do Distrito Federal-FAPDF (Grants no. 00193-00000766/2021-71 and 00193-00000826/2021-55) and CNPq (Grant Universal 404013/2021-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcela R. Machado.

A Transfer matrix method

A Transfer matrix method

Transfer matrix method allows us to exploit the dynamic stiffness matrix of a single piezo-beam for analyzing periodic arrangements of such beams. The spectral transfer matrix method [32] is an analytical spectral approach of the system in the state-space form to directly obtain the transfer matrix of the structure. From dynamic system relationship, a frequency-domain state-vector equation is obtained as

$$\begin{aligned} \frac{d\hat{{\mathbf {y}}}(x)}{\mathrm{d}x}={\mathbf {A}}\left( \omega \right) \hat{{\mathbf {y}}}(x) \qquad \left( 0\le x\le L\right) , \end{aligned}$$
(40)

where \({\mathbf {A}}\left( \mathbf {\omega }\right) \) is the system coefficient matrix with \([2n \times 2n]\) degrees of freedom, and \(\hat{{\mathbf {y}}}(x)=\{\hat{{\mathbf {d}}}\ \ \ \hat{{\mathbf {F}}}\}^{\mathbf {T}}\) is the state vector with \(\hat{{\mathbf {d}}}\) as the spectral nodal displacements and \( \hat{{\mathbf {F}}}\) the spectral nodal forces vectors. The general solution of Eq. (40) for a structural element of length L is given by

$$\begin{aligned} \hat{{\mathbf {y}}}\left( L\right) ={\mathbf {e}}^{{\mathbf {A}}L}\hat{{\mathbf {y}}}\left( {\mathbf {0}}\right) ={\mathbf {T}}\left( \mathbf {\omega }\right) \hat{{\mathbf {y}}}\left( {\mathbf {0}}\right) , \end{aligned}$$
(41)

where \({\mathbf {T}}\left( \mathbf {\omega }\right) ={\mathbf {e}}^{{\mathbf {A}}L}\) is the transfer matrix, in its exponential form. If all eigenvectors of the matrix \({\mathbf {A}}\) are linearly independent, the transfer matrix can be written as

$$\begin{aligned}&\left\{ \begin{matrix}u_{r}\\ {-F}_{r}\\ \end{matrix}\right\} =\left[ \begin{matrix}-S_{lr}^{-{\mathbf {1}}}S_{ll}&{}-S_{lr}^{-{\mathbf {1}}}\\ S_{rl}-S_{rr}S_{lr}^{-{\mathbf {1}}}S_{ll}&{}{-S}_{rr}S_{lr}^{-{\mathbf {1}}}\\ \end{matrix}\right] \left\{ \begin{matrix}u_{l}\\ F_{l}\\ \end{matrix}\right\} \nonumber \\&\quad or\ \ \ \ \ \ \ \ \ {\mathbf {q}}_{r}={\mathbf {T}}(\omega ){\mathbf {q}}_{l}, \end{aligned}$$
(42)

where \({\mathbf {T}}\left( \mathbf {\omega }\right) \) relates the left (l) state vector \({\mathbf {q}}_l\) with the right (r) state vector \({\mathbf {q}}_r\) of the unit-cell [46]

$$\begin{aligned} {\mathbf {T}}\left\{ \begin{matrix}{u}_{l}\\ {F}_{l}\\ \end{matrix}\right\} \ =\ {e}^{\mu }\ \ \left\{ \begin{matrix}{u}_{r}\\ {F}_{r}\\ \end{matrix}\right\} \ \ \ \ \ \ or \ \ {{\mathbf {T}}}{{\mathbf {q}}}=\ {e}^{\mu }{\mathbf {q}}, \end{aligned}$$
(43)

\({\mathbf {A}}=e^\mu \) is the corresponding eigenvector matrix and \({\mathbf {q}}\) are the corresponding eigenvectors derived from the Bloch wave eigenproblem with \(\mu \) being the eigenvalues.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Moura, B.B., Machado, M.R., Mukhopadhyay, T. et al. Dynamic and wave propagation analysis of periodic smart beams coupled with resonant shunt circuits: passive property modulation. Eur. Phys. J. Spec. Top. 231, 1415–1431 (2022). https://doi.org/10.1140/epjs/s11734-022-00504-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00504-x

Navigation