Skip to main content
Log in

Composite dynamics and cosmology: inflation

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this work, we review the composite dynamics in various models which can be efficiently used to study the mechanism of cosmic inflation. In the framework of single-field inflationary models, we consider the inflaton field emerging as a bound state stemming solely from the underlying fermionic degrees of freedom in various composite theories. Moreover, we constrain the number of e-foldings for composite models of inflation to obtain successful inflation and satisfy the observational data from Planck 2018, simultaneously. In addition, a set of cosmological parameters, e.g., the primordial spectral index \(n_s\) and tensor-to-scalar ratio r, is constrained using the results reported by Planck 2018.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Preheating mechanize generated by the composite inflaton was investigated in Ref. [104].

References

  1. A. Albrecht, P.J. Steinhardt, Cosmology for Grand United Theories with Radiatively Induced Symmetry Breaking. Phys. Rev. Lett. 48, 1220–1223 (1982). https://doi.org/10.1103/PhysRevLett.48.1220

    Article  ADS  Google Scholar 

  2. A. Albrecht, P.J. Steinhardt, Cosmology for grand United theories with radiatively induced symmetry breaking. Adv. Ser. Astrophys. Cosmol. 3, 158 (1987)

    Google Scholar 

  3. A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347–356 (1981). https://doi.org/10.1103/PhysRevD.23.347

    Article  MATH  ADS  Google Scholar 

  4. A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems. Adv. Ser. Astrophys. Cosmol. 3, 139 (1987)

    Google Scholar 

  5. A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. 108B, 389–393 (1982). https://doi.org/10.1016/0370-2693(82)91219-9

    Article  ADS  Google Scholar 

  6. A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Adv. Ser. Astrophys. Cosmol. 3, 149 (1987)

    Google Scholar 

  7. V.F. Mukhanov, G.V. Chibisov, Quantum fluctuations and a nonsingular universe. JETP Lett. 33, 532–535 (1981)

    ADS  Google Scholar 

  8. V.F. Mukhanov, G.V. Chibisov, Quantum fluctuations and a nonsingular universe. Pisma Zh. Eksp. Teor. Fiz. 33, 549 (1981)

    ADS  Google Scholar 

  9. A.A. Starobinsky, A new type of isotropic cosmological models without singularity. Phys. Lett. 91B, 99–102 (1980). https://doi.org/10.1016/0370-2693(80)90670-X

    Article  MATH  ADS  Google Scholar 

  10. A.A. Starobinsky, A new type of isotropic cosmological models without singularity. Adv. Ser. Astrophys. Cosmol. 3, 130 (1987)

    Google Scholar 

  11. A.A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the universe. JETP Lett. 30, 682–685 (1979)

    ADS  Google Scholar 

  12. A.A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the universe. Pisma Zh. Eksp. Teor. Fiz. 30, 719 (1979)

    ADS  Google Scholar 

  13. J.L. Cook et al., Is Higgs inflation ruled out? Phys. Rev. D 89(10), 103525 (2014). https://doi.org/10.1103/PhysRevD.89.103525arXiv:1403.4971 [astro-ph.CO]

    Article  ADS  Google Scholar 

  14. Y. Hamada et al., Higgs inflation is still alive after the results from BICEP2. Phys. Rev. Lett. 112(24), 241301 (2014). https://doi.org/10.1103/PhysRevLett.112.241301arXiv:1403.5043 [hep-ph]

    Article  ADS  Google Scholar 

  15. C. Germani, Y. Watanabe, N. Wintergerst, Self-unitarization of new Higgs inflation and compatibility with Planck and BICEP2 data. JCAP 12, 009 (2014). https://doi.org/10.1088/1475-7516/2014/12/009arXiv:1403.5766 [hep-ph]

    Article  ADS  Google Scholar 

  16. I. Oda, T. Tomoyose, Quadratic Chaotic inflation from Higgs inflation. Adv. Stud. Theor. Phys 8, 551 (2014). https://doi.org/10.12988/astp.2014.4572arXiv:1404.1538 [hep-ph]

    Article  Google Scholar 

  17. J. Ellis, N.E. Mavromatos, D.V. Nanopoulos, Starobinsky-like Inflation in Dilaton-Brane cosmology. Phys. Lett. B 732, 380–384 (2014). https://doi.org/10.1016/j.physletb.2014.04.014arXiv:1402.5075 [hep-th]

    Article  MATH  ADS  Google Scholar 

  18. S. Viaggiu, M. Montuori, Graceful exit from inflation to radiation era with rapidly decreasing agegraphic potentials. Eur. Phys. J. Plus 129(10), 224 (2014). https://doi.org/10.1140/epjp/i2014-14224-xarXiv:1403.2868 [astro-ph.CO]

    Article  Google Scholar 

  19. S. Ferrara, A. Kehagias, A. Riotto, The imaginary Starobinsky model. Fortsch. Phys. 62, 573–583 (2014). https://doi.org/10.1002/prop.201400018arXiv:1403.5531 [hep-th]

    Article  MATH  ADS  Google Scholar 

  20. E. Palti, T. Weigand, Towards large r from [p, q]-inflation. JHEP 04, 155 (2014). https://doi.org/10.1007/JHEP04(2014)155arXiv:1403.7507 [hep-th]

    Article  ADS  Google Scholar 

  21. K. Sravan Kumar et al., Inflation in a two 3-form fields scenario. JCAP. 06, 064 (2014). https://doi.org/10.1088/1475-7516/2014/06/064arXiv:1404.0211 [gr-qc]

    Article  ADS  Google Scholar 

  22. T. Fujita, M. Kawasaki, S. Yokoyama, Curvaton in large field inflation. JCAP 09, 015 (2014). https://doi.org/10.1088/1475-7516/2014/09/015arXiv:1404.0951 [astro-ph.CO]

    Article  ADS  Google Scholar 

  23. M. Bastero-Gil et al., Observational implications of mattergenesis during inflation. JCAP 10, 053 (2014). https://doi.org/10.1088/1475-7516/2014/10/053arXiv:1404.4976 [astro-ph.CO]

    Article  ADS  Google Scholar 

  24. S. Kawai, N. Okada, TeV scale seesaw from supersymmetric Higgs-lepton inflation and BICEP2. Phys. Lett. B 735, 186–190 (2014). https://doi.org/10.1016/j.physletb.2014.06.042arXiv:1404.1450 [hep-ph]

    Article  ADS  Google Scholar 

  25. K. Kannike, A. Racioppi, M. Raidal, Embedding inflation into the Standard Model—more evidence for classical scale invariance. JHEP 06, 154 (2014). https://doi.org/10.1007/JHEP06(2014)154arXiv:1405.3987 [hep-ph]

    Article  ADS  Google Scholar 

  26. J. Joergensen, F. Sannino, O. Svendsen, Primordial tensor modes from quantum corrected inflation. Phys. Rev. D 90(4), 043509 (2014). https://doi.org/10.1103/PhysRevD.90.043509arXiv:1403.3289 [hep-ph]

    Article  ADS  Google Scholar 

  27. P. Channuie, J.J. Joergensen, F. Sannino, Minimal composite inflation. JCAP 05, 007 (2011). https://doi.org/10.1088/1475-7516/2011/05/007arXiv:1102.2898 [hep-ph]

    Article  ADS  Google Scholar 

  28. F. Bezrukov et al., Composite inflation setup and glueball inflation. Phys. Rev. D 86, 063513 (2012). https://doi.org/10.1103/PhysRevD.86.063513arXiv:1112.4054 [hep-ph]

    Article  ADS  Google Scholar 

  29. P. Channuie, J.J. Jorgensen, F. Sannino, Composite inflation from super Yang-Mills, orientifold and one-flavor QCD. Phys. Rev. D 86, 125035 (2012). https://doi.org/10.1103/PhysRevD.86.125035arXiv:1209.6362 [hep-ph]

    Article  ADS  Google Scholar 

  30. N. Evans, J. French, K. Kim, Holography of a composite inflation. JHEP 11, 145 (2010). https://doi.org/10.1007/JHEP11(2010)145arXiv:1009.5678 [hep-th]

    Article  MATH  ADS  Google Scholar 

  31. P. Channuie, C. Xiong, United composite scenario for inflation and dark matter in the Nambu-Lasinio model. Phys. Rev. D 95(4), 043521 (2017). https://doi.org/10.1103/PhysRevD.95.043521arXiv:1609.04698 [hep-ph]

    Article  ADS  Google Scholar 

  32. D. Samart, P. Channuie, Composite Nambu-Lasinio inflation near infrared fixed point of the Hořava-Lifshitz theory. Phys. Lett. B 797, 134918 (2019). https://doi.org/10.1016/j.physletb.2019.134918arXiv:1807.10724 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  33. K. Karwan, P. Channuie, Composite inflation confronts BICEP2 and PLANCK. JCAP 06, 045 (2014). https://doi.org/10.1088/1475-7516/2014/06/045arXiv:1307.2880 [hep-ph]

    Article  ADS  Google Scholar 

  34. P. Channuie, BICEP2 constrains composite inflation. Int. J. Mod. Phys. D 23(08), 1450070 (2014). https://doi.org/10.1142/S0218271814500709arXiv:1312.7122 [gr-qc]

    Article  MATH  ADS  Google Scholar 

  35. P. Channuie, K. Karwan, Large tensor-to-scalar ratio from composite inflation. Phys. Rev. D 90(4), 047303 (2014). https://doi.org/10.1103/PhysRevD.90.047303arXiv:1404.5879 [astro-ph.CO]

    Article  ADS  Google Scholar 

  36. P. Channuie, Strong dynamics and inflation: a review. Nucl. Phys. B 892, 429–448 (2015). https://doi.org/10.1016/j.nuclphysb.2015.01.008arXiv:1410.7547 [hep-ph]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  37. B.L. Spokoiny, Inflation and generation of perturbations in broken-symmetric theory of gravity. Phys. Lett. B 147, 39–43 (1984). https://doi.org/10.1016/0370-2693(84)90587-2

    Article  ADS  Google Scholar 

  38. T. Futamase, K. Maeda, Chaotic inflationary scenario in models having nonminimal coupling with curvature. Phys. Rev. D 39, 399–404 (1989). https://doi.org/10.1103/PhysRevD.39.399

    Article  ADS  Google Scholar 

  39. D.S. Salopek, J.R. Bond, J.M. Bardeen, Designing density fluctuation spectra in inflation. Phys. Rev. D 40, 1753 (1989). https://doi.org/10.1103/PhysRevD.40.1753

    Article  ADS  Google Scholar 

  40. R. Fakir, W.G. Unruh, Improvement on cosmological chaotic inflation through nonminimal coupling. Phys. Rev. D 41, 1783–1791 (1990). https://doi.org/10.1103/PhysRevD.41.1783

    Article  ADS  Google Scholar 

  41. D.I. Kaiser, Primordial spectral indices from generalized Einstein theories. Phys. Rev. D 52, 4295–4306 (1995). https://doi.org/10.1103/PhysRevD.52.4295arXiv:astro-ph/9408044v2

    Article  ADS  Google Scholar 

  42. E. Komatsu, T. Futamase, Complete constraints on a nonminimally coupled chaotic inflationary scenario from the cosmic microwave background. Phys. Rev. D 59, 064029 (1999). https://doi.org/10.1103/PhysRevD.59.064029arXiv:9901127 [astro-ph]

    Article  ADS  Google Scholar 

  43. S. Tsujikawa, B. Gumjudpai, Density perturbations in generalized Einstein scenarios and constraints on nonminimal couplings from the Cosmic Microwave Background. Phys. Rev. D 69, 123523 (2004). https://doi.org/10.1103/PhysRevD.69.123523arXiv:0402185 [astro-ph]

    Article  ADS  Google Scholar 

  44. A.D. Linde, Chaotic inflation. Phys. Lett. B 129, 177–181 (1983). https://doi.org/10.1016/0370-2693(83)90837-7

    Article  ADS  Google Scholar 

  45. F.L. Bezrukov, M. Shaposhnikov, The Standard Model Higgs boson as the inflation. Phys. Lett. B 659, 703–706 (2008). https://doi.org/10.1016/j.physletb.2007.11.072arXiv:0710.3755 [hep-th]

    Article  ADS  Google Scholar 

  46. A.O. Barvinsky, A. Yu Kamenshchik, A.A. Starobinsky, Inflation scenario via the Standard Model Higgs boson and LHC. JCAP 11, 021 (2008). https://doi.org/10.1088/1475-7516/2008/11/021arXiv:0809.2104 [hep-ph]

    Article  ADS  Google Scholar 

  47. F. Bezrukov, D. Gorbunov, M. Shaposhnikov, On initial conditions for the Hot Big Bang. JCAP 06, 029 (2009). https://doi.org/10.1088/1475-7516/2009/06/029arXiv:0812.3622 [hep-ph]

    Article  ADS  Google Scholar 

  48. J. Garcia-Bellido, D.G. Figueroa, J. Rubio, Preheating in the Standard Model with the Higgs-Inflation coupled to gravity. Phys. Rev. D 79, 063531 (2009). https://doi.org/10.1103/PhysRevD.79.063531arXiv:0812.4624 [hep-ph]

    Article  ADS  Google Scholar 

  49. A. De Simone, M.P. Hertzberg, F. Wilczek, Running inflation in the standard model. Phys. Lett. B 678, 1–8 (2009). https://doi.org/10.1016/j.physletb.2009.05.054arXiv:0812.4946 [hep-ph]

    Article  ADS  Google Scholar 

  50. F.L. Bezrukov, A. Magnin, M. Shaposhnikov, Standard Model Higgs boson mass from inflation. Phys. Lett. B 675, 88–92 (2009). https://doi.org/10.1016/j.physletb.2009.03.035arXiv:0812.4950 [hep-ph]

    Article  ADS  Google Scholar 

  51. F. Bezrukov, M. Shaposhnikov, Standard Model Higgs boson mass from inflation: two loop analysis. JHEP 07, 089 (2009). https://doi.org/10.1088/1126-6708/2009/07/089arXiv:0904.1537 [hep-ph]

    Article  ADS  Google Scholar 

  52. A.O. Barvinsky et al., Asymptotic freedom in inflationary cosmology with a non-minimally coupled Higgs field. JCAP 12, 003 (2009). https://doi.org/10.1088/1475-7516/2009/12/003arXiv:0904.1698 [hep-ph]

    Article  ADS  Google Scholar 

  53. P. Channuie, Composite inflation in the light of 2015 Planck data. Class. Quant. Grav. 33(15), 157001 (2016). https://doi.org/10.1088/0264-9381/33/15/157001arXiv:1510.05262 [hep-ph]

    Article  MATH  ADS  Google Scholar 

  54. Y. Fujii, K. Maeda, The Scalar-tensor Theory of Gravitation. Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 2007). https://doi.org/10.1017/CBO9780511535093 (ISBN: 978-0-521-03752-5, 978-0-521-81159-0, 978-0-511-02988-2)

    Book  Google Scholar 

  55. D.H. Lyth, A.R. Liddle, The primordial density perturbation: Cosmology, inflation and the origin of structure. (2009)

  56. P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation. Astron. Astrophys. 594, A20 (2016). https://doi.org/10.1051/0004-6361/201525898arXiv:1502.02114 [astro-ph.CO]

    Article  Google Scholar 

  57. C.T. Hill, E.H. Simmons, Strong dynamics and electroweak symmetry breaking. Phys. Rept. 381, 235–402 (2003). https://doi.org/10.1016/S0370-1573(03)00140-6 [Erratum: Phys.Rept. 390, 553-554 (2004)]. arXiv:hep-ph/0203079

  58. S.P. Martin, A supersymmetry primer, in Perspectives on Supersymmetry, vol. 2, ed. by G.L. Kane (Springer, New York, 2010), pp. 1–153. https://doi.org/10.1142/9789812839657_0001arXiv:hep-ph/9709356

  59. T. Hatsuda, T. Kunihiro, QCD phenomenology based on a chiral effective Lagrangian. Phys. Rept. 247, 221–367 (1994). https://doi.org/10.1016/0370-1573(94)90022-1arXiv:hep-ph/9401310

  60. S.P. Klevansky, The Nambu-Jona-Lasinio model of quantum chromodynamics. Rev. Mod. Phys. 64, 649–708 (1992). https://doi.org/10.1103/RevModPhys.64.649

    Article  MathSciNet  ADS  Google Scholar 

  61. D. Ebert, Bosonization in Particle Physics. In: Lect. Notes Phys. 508 (1998). Ed. by H. Meyer-Ortmanns and A. Klumper, pp. 103–114. https://doi.org/10.1007/BFb0106879. arXiv:hep-ph/9710511

  62. C.T. Hill, D.S. Salopek, Calculable nonminimal coupling of composite scalar bosons to gravity. Ann. Phys. 213, 21–30 (1992). https://doi.org/10.1016/0003-4916(92)90281-P

    Article  MathSciNet  ADS  Google Scholar 

  63. H. Davoudiasl et al., The new minimal standard model. Phys. Lett. B 609, 117–123 (2005). https://doi.org/10.1016/j.physletb.2005.01.026arXiv:hep-ph/0405097

  64. T.E. Clark et al., The Standard Model Higgs Boson-inflation and dark matter. Phys. Rev. D 80, 075019 (2009). https://doi.org/10.1103/PhysRevD.80.075019arXiv:hep-ph/09065595

  65. T. Inagaki, S.D. Odintsov, H. Sakamoto, Gauged Nambu-Jona-Lasinio inflation. Astrophys. Space Sci. 360(2), 67 (2015). https://doi.org/10.1007/s10509-015-2584-0arXiv: 1509.03738 [hep-th]

    Article  MATH  ADS  Google Scholar 

  66. T. Inagaki, S.D. Odintsov, H. Sakamoto, Inflation from the finite scale gauged Nambu-Lasinio model. Nucl. Phys. B 919, 297–314 (2017). https://doi.org/10.1016/j.nuclphysb.2017.03.024arXiv:1611.00210 [hep-ph]

    Article  MATH  ADS  Google Scholar 

  67. C. Xiong, QCD flux tubes and anomaly inflow. Phys. Rev. D 88(2), 025042 (2013). https://doi.org/10.1103/PhysRevD.88.025042arXiv:1302.7312 [hep-th]

    Article  ADS  Google Scholar 

  68. C. Xiong, Gauged Nambu-Jona-Lasinio model and axionic QCD string. (2014). arXiv:1412.8759 [hep-ph]

  69. T. Inagaki, T. Muta, S.D. Odintsov, Dynamical symmetry breaking in curved space-time: Four fermion interactions. Prog. Theor. Phys. Suppl. 127, 93 (1997). https://doi.org/10.1143/PTPS.127.93arXiv:hep-ph/9711084

  70. C. Xiong, A de-gauging approach to physics beyond the Standard Model. In: Conference on New Physics at the Large Hadron Collider. (2016). https://doi.org/10.1142/9789813145504_0027. arXiv:1606.01883 [hep-ph]

  71. C. Xiong, Dark fermions from the Standard Model via spin-charge separation. (2016). arXiv:1605.09786 [hep-ph]

  72. R.N. Lerner, J. McDonald, Gauge singlet scalar as inflation and thermal relic dark matter. Phys. Rev. D 80, 123507 (2009). https://doi.org/10.1103/PhysRevD.80.123507arXiv:0909.0520 [hep-ph]

    Article  ADS  Google Scholar 

  73. D.H. Lyth, A. Riotto, Particle physics models of inflation and the cosmological density perturbation. Phys. Rept. 314, 1–146 (1999). https://doi.org/10.1016/S0370-1573(98)00128-8arXiv:hep-ph/9807278

  74. P. Horava, Quantum gravity at a Lifshitz point. Phys. Rev. D 79, 084008 (2009). https://doi.org/10.1103/PhysRevD.79.084008arXiv:0901.3775 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  75. A. Wang, Hořava gravity at a Lifshitz point: a progress report. Int. J. Mod. Phys. D 26(07), 1730014 (2017). https://doi.org/10.1142/S0218271817300142arXiv:1701.06087 [gr-qc]

    Article  MATH  ADS  Google Scholar 

  76. A. Dhar, G. Mandal, S.R. Wadia, Asymptotically free four-fermi theory in 4 dimensions at the z=3 Lifshitz-like fixed point. Phys. Rev. D 80, 105018 (2009). https://doi.org/10.1103/PhysRevD.80.105018arXiv:0905.2928 [hep-th]

    Article  ADS  Google Scholar 

  77. A. Dhar, G. Mandal, P. Nag, Renormalization group flows in a Lifshitz-like four fermi model. Phys. Rev. D 81, 085005 (2010). https://doi.org/10.1103/PhysRevD.81.085005arXiv: 0911.5316 [hep-th]

    Article  ADS  Google Scholar 

  78. E. Kiritsis, G. Kofinas, Horava-Lifshitz cosmology. Nucl. Phys. B 821, 467–480 (2009). https://doi.org/10.1016/j.nuclphysb.2009.05.005arXiv:0904.1334 [hep-th]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  79. G. Calcagni, Cosmology of the Lifshitz universe. JHEP 09, 112 (2009). https://doi.org/10.1088/1126-6708/2009/09/112arXiv:0904.0829 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  80. R. Brandenberger, Matter bounce in Horava-Lifshitz cosmology. Phys. Rev. D 80, 043516 (2009). https://doi.org/10.1103/PhysRevD.80.043516arXiv:0904.2835 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  81. J. Kluson, Note about equivalence of F(R) and scalar tensor Horava-Lifshitz gravities. Phys. Rev. D 84, 104014 (2011). https://doi.org/10.1103/PhysRevD.84.104014arXiv:1107.5660 [hep-th]

    Article  ADS  Google Scholar 

  82. D.L. Lopez Nacir, F.D. Mazzitelli, L.G. Trombetta, Lifshitz scalar fields: one loop renormalization in curved backgrounds. Phys. Rev. D 85, 024051 (2012). https://doi.org/10.1103/PhysRevD.85.024051arXiv:1111.1662 [hep-th]

    Article  ADS  Google Scholar 

  83. D. Blas, O. Pujolas, S. Sibiryakov, Consistent extension of Horava gravity. Phys. Rev. Lett. 104, 181302 (2010). https://doi.org/10.1103/PhysRevLett.104.181302arXiv:0909.3525 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  84. J. Kluson, Note about Weyl invariant Horava-Lifshitz gravity. Phys. Rev. D 84, 044025 (2011). https://doi.org/10.1103/PhysRevD.84.044025arXiv:1104.4200 [hep-th]

    Article  ADS  Google Scholar 

  85. A. Emir Gümrükçüoğlu, M. Saravani, T.P. Sotiriou, Hořava gravity after GW170817. Phys. Rev. D 97(2), 024032 (2018). https://doi.org/10.1103/PhysRevD.97.024032arXiv:1711.08845 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  86. O. Ramos, E. Barausse, Constraints on Hořava gravity from binary black hole observations. Phys. Rev. D 99(2), 024034 (2019). https://doi.org/10.1103/PhysRevD.99.024034arXiv:1811.07786 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  87. G. Calcagni, Detailed balance in Horava-Lifshitz gravity. Phys. Rev. D 81, 044006 (2010). https://doi.org/10.1103/PhysRevD.81.044006arXiv:0905.3740 [hep-th]

    Article  ADS  Google Scholar 

  88. H. Lu, J. Mei, C.N. Pope, Solutions to Horava gravity. Phys. Rev. Lett 103, 091301 (2009). https://doi.org/10.1103/PhysRevLett.103.091301arXiv:0904.1595 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  89. A.H. Guth, S.Y. Pi, Fluctuations in the new inflationary universe. Phys. Rev. Lett. 49, 1110–1113 (1982). https://doi.org/10.1103/PhysRevLett.49.1110

    Article  ADS  Google Scholar 

  90. G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO. JHEP 08, 098 (2012). https://doi.org/10.1007/JHEP08(2012)098arXiv:1205.6497 [hep-ph]

    Article  ADS  Google Scholar 

  91. F. Sannino, K. Tuominen, Orientifold theory dynamics and symmetry breaking. Phys. Rev. D 71, 051901 (2005). https://doi.org/10.1103/PhysRevD.71.051901arXiv:hep-ph/0405209

  92. D. Dennis Dietrich, F. Sannino, Conformal window of SU(N) gauge theories with fermions in higher dimensional representations. Phys. Rev. D 75, 085018 (2007). https://doi.org/10.1103/PhysRevD.75.085018arXiv:0611341 [hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  93. A.T. Ryttov, F. Sannino, Conformal windows of SU(N) gauge theories, higher dimensional representations and the size of the unparticle world. Phys. Rev. D 76, 105004 (2007). https://doi.org/10.1103/PhysRevD.76.105004arXiv:0707.3166 [hep-th]

    Article  ADS  Google Scholar 

  94. T.A. Ryttov, F. Sannino, Supersymmetry inspired QCD beta function. Phys. Rev. D 78, 065001 (2008). https://doi.org/10.1103/PhysRevD.78.065001arXiv:0711.3745 [hep-th]

    Article  ADS  Google Scholar 

  95. F. Sannino, Conformal windows of SP(2N) and SO(N) gauge theories. Phys. Rev. D 79, 096007 (2009). https://doi.org/10.1103/PhysRevD.79.096007arXiv:0902.3494 [hep-ph]

    Article  ADS  Google Scholar 

  96. M. Mojaza, C. Pica, F. Sannino, Hot conformal gauge theories. Phys. Rev. D 82, 116009 (2010). https://doi.org/10.1103/PhysRevD.82.116009arXiv:1010.4798 [hep-ph]

  97. C. Pica, F. Sannino, Beta function and anomalous dimensions. Phys. Rev. D 83, 116001 (2011). https://doi.org/10.1103/PhysRevD.83.116001arXiv:1011.3832 [hep-ph]

    Article  ADS  Google Scholar 

  98. C. Pica, F. Sannino, UV and IR zeros of gauge theories at the four loop order and beyond. Phys. Rev. D 83, 035013 (2011). https://doi.org/10.1103/PhysRevD.83.035013arXiv:1011.5917 [hep-ph]

    Article  ADS  Google Scholar 

  99. M. Mojaza et al., Dual of QCD with one adjoint fermion. Phys. Rev. D 83, 065022 (2011). https://doi.org/10.1103/PhysRevD.83.065022arXiv:1101.1522 [hep-th]

  100. R. Foadi et al., Minimal walking technicolor: set up for collider physics. Phys. Rev. D 76, 055005 (2007). https://doi.org/10.1103/PhysRevD.76.055005arXiv:0706.1696 [hep-ph]

    Article  ADS  Google Scholar 

  101. A. Doff, A.A. Natale, P.S. Rodrigues da Silva, Light composite Higgs from an effective action for technicolor. Phys. Rev. D 77, 075012 (2008). https://doi.org/10.1103/PhysRevD.77.075012arXiv: 0802.1898 [hep-ph]

    Article  ADS  Google Scholar 

  102. M. Fabbrichesi, M. Piai, L. Vecchi, Dynamical electro-weak symmetry breaking from deformed AdS: vector mesons and effective couplings. Phys. Rev. D 78, 045009 (2008). https://doi.org/10.1103/PhysRevD.78.045009arXiv:0804.0124 [hep-ph]

    Article  ADS  Google Scholar 

  103. Y. Akrami et al., Planck 2018 results. X. Constraints on inflation. Astron. Astrophys. 641, A10 (2020). https://doi.org/10.1051/0004-6361/201833887arXiv:1807.06211 [astro-ph.CO]

    Article  Google Scholar 

  104. P. Channuie, P. Koad, Preheating after technicolor inflation. Phys. Rev. D 94(4), 043528 (2016). https://doi.org/10.1103/PhysRevD.94.043528arXiv:1603.06875 [hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

P. Channuie acknowledged the Mid-Career Research Grant 2020 from National Research Council of Thailand.

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Sridhar, Giacomo Cacciapaglia, Aldo Deandrea.

Special issue: Review of Fundamental Composite Dynamics. Guest editors: K. Sridhar, Giacomo Cacciapaglia, Aldo Deandrea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samart, D., Pongkitivanichkul, C. & Channuie, P. Composite dynamics and cosmology: inflation. Eur. Phys. J. Spec. Top. 231, 1325–1344 (2022). https://doi.org/10.1140/epjs/s11734-022-00446-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00446-4

Navigation