Skip to main content
Log in

Holography of a composite inflaton

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the time evolution of a brane construction that is holographically dual to a strongly coupled gauge theory that dynamically breaks a global symmetry through the generation of an effective composite Higgs vev. The D3/D7 system with a background magnetic field or non-trivial gauge coupling (dilaton) profile displays the symmetry breaking. We study motion of the D7 brane in the background of the D3 branes. For small field inflation in the field theory the effective Higgs vev rolls from zero to the true vacuum value. We study what phenomenological dilaton profile generates the slow rolling needed, hence learning how the strongly coupled gauge theory’s coupling must run. We note that evolution of our configuration in the holographic direction, representing the phyiscs of the strong interactions, can provide additional slowing of the roll time. Inflation seems to be favoured if the coupling changes by only a small amount or very gently. We speculate on how such a scenario could be realized away from N=4 gauge theory, for example, in a walking gauge theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  3. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  4. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  5. M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Towards a holographic dual of large-N c QCD, JHEP 05 (2004) 041 [hep-th/0311270] [SPIRES].

    Article  ADS  Google Scholar 

  6. J. Babington, J. Erdmenger, N.J. Evans, Z. Guralnik and I. Kirsch, Chiral symmetry breaking and pions in non-supersymmetric gauge / gravity duals, Phys. Rev. D 69 (2004) 066007 [hep-th/0306018] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. K. Ghoroku and M. Yahiro, Chiral symmetry breaking driven by dilaton, Phys. Lett. B 604 (2004) 235 [hep-th/0408040] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  8. R. Alvares, N. Evans, A. Gebauer and G.J. Weatherill, Holographic integral equations and walking technicolour, Phys. Rev. D 81 (2010) 025013 [arXiv:0910.3073] [SPIRES].

    ADS  Google Scholar 

  9. D.H. Lyth and A. Riotto, Particle physics models of inflation and the cosmological density perturbation, Phys. Rept. 314 (1999) 1 [hep-ph/9807278] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. M. Graña and J. Polchinski, Gauge/gravity duals with holomorphic dilaton, Phys. Rev. D 65 (2002) 126005 [hep-th/0106014] [SPIRES].

    ADS  Google Scholar 

  11. M. Bertolini, P. Di Vecchia, M. Frau, A. Lerda and R. Marotta, N = 2 gauge theories on systems of fractional D3/D7 branes, Nucl. Phys. B 621 (2002) 157 [hep-th/0107057] [SPIRES].

    Article  ADS  Google Scholar 

  12. A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Meson spectroscopy in AdS/CFT with flavour, JHEP 07 (2003) 049 [hep-th/0304032] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. J. Erdmenger, N. Evans, I. Kirsch and E. Threlfall, Mesons in Gauge/Gravity Duals – A Review, Eur. Phys. J. A 35 (2008) 81 [arXiv:0711.4467] [SPIRES].

    ADS  Google Scholar 

  15. J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a Holographic Model of Hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [SPIRES].

    Article  ADS  Google Scholar 

  16. L. Da Rold and A. Pomarol, Chiral symmetry breaking from five dimensional spaces, Nucl. Phys. B 721 (2005) 79 [hep-ph/0501218] [SPIRES].

    ADS  Google Scholar 

  17. K. Dasgupta, C. Herdeiro, S. Hirano and R. Kallosh, D3/D7 inflationary model and M-theory, Phys. Rev. D 65 (2002) 126002 [hep-th/0203019] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  18. V.G. Filev, C.V. Johnson, R.C. Rashkov and K.S. Viswanathan, Flavoured large-N gauge theory in an external magnetic field, JHEP 10 (2007) 019 [hep-th/0701001] [SPIRES].

    Article  ADS  Google Scholar 

  19. T. Albash, V.G. Filev, C.V. Johnson and A. Kundu, Finite Temperature Large-N Gauge Theory with Quarks in an External Magnetic Field, JHEP 07 (2008) 080 [arXiv:0709.1547] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. J. Erdmenger, R. Meyer and J.P. Shock, AdS/CFT with Flavour in Electric and Magnetic Kalb-Ramond Fields, JHEP 12 (2007) 091 [arXiv:0709.1551] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. A.V. Zayakin, QCD Vacuum Properties in a Magnetic Field from AdS/CFT: Chiral Condensate and Goldstone Mass, JHEP 07 (2008) 116 [arXiv:0807.2917] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. N. Evans, A. Gebauer, K.-Y. Kim and M. Magou, Holographic Description of the Phase Diagram of a Chiral Symmetry Breaking Gauge Theory, JHEP 03 (2010) 132 [arXiv:1002.1885] [SPIRES].

    Article  ADS  Google Scholar 

  23. K. Jensen, A. Karch and E.G. Thompson, A Holographic Quantum Critical Point at Finite Magnetic Field and Finite Density, JHEP 05 (2010) 015 [arXiv:1002.2447] [SPIRES].

    Article  ADS  Google Scholar 

  24. K. Jensen, A. Karch, D.T. Son and E.G. Thompson, Holographic Berezinskii-Kosterlitz-Thouless Transitions, Phys. Rev. Lett. 105 (2010) 041601 [arXiv:1002.3159] [SPIRES].

    Article  ADS  Google Scholar 

  25. N. Evans, A. Gebauer, K.-Y. Kim and M. Magou, Phase diagram of the D3/D5 system in a magnetic field and a BKT transition, arXiv:1003.2694 [SPIRES].

  26. N. Evans, K. Jensen and K.-Y. Kim, Non Mean-Field Quantum Critical Points from Holography, arXiv:1008.1889 [SPIRES].

  27. A. Albrecht and P.J. Steinhardt, Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking, Phys. Rev. Lett. 48 (1982) 1220 [SPIRES].

    Article  ADS  Google Scholar 

  28. A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B 108 (1982) 389.

    MathSciNet  ADS  Google Scholar 

  29. R.A. Janik, The dynamics of quark-gluon plasma and AdS/CFT, arXiv:1003.3291 [SPIRES].

  30. J. Grosse, R.A. Janik and P. Surowka, Flavors in an expanding plasma, Phys. Rev. D 77 (2008) 066010 [arXiv:0709.3910] [SPIRES].

    ADS  Google Scholar 

  31. S.R. Das, T. Nishioka and T. Takayanagi, Probe Branes, Time-dependent Couplings and Thermalization in AdS/CFT, JHEP 07 (2010) 071 [arXiv:1005.3348] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  32. K. Murata, S. Kinoshita and N. Tanahashi, Non-equilibrium Condensation Process in a Holographic Superconductor, JHEP 07 (2010) 050 [arXiv:1005.0633] [SPIRES].

    Article  ADS  Google Scholar 

  33. Y. Nambu and G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. I, Phys. Rev. 122 (1961) 345 [SPIRES].

    Article  ADS  Google Scholar 

  34. V.G. Filev, Criticality, Scaling and Chiral Symmetry Breaking in External Magnetic Field, JHEP 04 (2008) 088 [arXiv:0706.3811] [SPIRES].

    Article  ADS  Google Scholar 

  35. V.G. Filev, C.V. Johnson and J.P. Shock, Universal Holographic Chiral Dynamics in an External Magnetic Field, JHEP 08 (2009) 013 [arXiv:0903.5345] [SPIRES].

    Article  ADS  Google Scholar 

  36. N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. T. Banks and A. Zaks, On the Phase Structure of Vector-Like Gauge Theories with Massless Fermions, Nucl. Phys. B 196 (1982) 189 [SPIRES].

    Article  ADS  Google Scholar 

  38. T. Appelquist, J. Terning and L.C.R. Wijewardhana, The Zero Temperature Chiral Phase Transition in SU(N) Gauge Theories, Phys. Rev. Lett. 77 (1996) 1214 [hep-ph/9602385] [SPIRES].

    Article  ADS  Google Scholar 

  39. F. Sannino and K. Tuominen, Orientifold theory dynamics and symmetry breaking, Phys. Rev. D 71 (2005) 051901 [hep-ph/0405209] [SPIRES].

    ADS  Google Scholar 

  40. D.D. Dietrich and F. Sannino, Walking in the SU(N), Phys. Rev. D 75 (2007) 085018 [hep-ph/0611341] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  41. T.A. Ryttov and F. Sannino, Conformal Windows of SU(N) Gauge Theories, Higher Dimensional Representations and The Size of The Unparticle World, Phys. Rev. D 76 (2007) 105004 [arXiv:0707.3166] [SPIRES].

    ADS  Google Scholar 

  42. T. Appelquist, G.T. Fleming and E.T. Neil, Lattice Study of Conformal Behavior in SU(3) Yang-Mills Theories, Phys. Rev. D 79 (2009) 076010 [arXiv:0901.3766] [SPIRES].

    ADS  Google Scholar 

  43. T. Appelquist, G.T. Fleming and E.T. Neil, Lattice Study of the Conformal Window in QCD-like Theories, Phys. Rev. Lett. 100 (2008) 171607 [Erratum ibid. 102 (2009) 149902] [arXiv:0712.0609] [SPIRES].

    Article  ADS  Google Scholar 

  44. S. Catterall and F. Sannino, Minimal walking on the lattice, Phys. Rev. D 76 (2007) 034504 [arXiv:0705.1664] [SPIRES].

    ADS  Google Scholar 

  45. L. Del Debbio, B. Lucini, A. Patella, C. Pica and A. Rago, Conformal vs confining scenario in SU(2) with adjoint fermions, Phys. Rev. D 80 (2009) 074507 [arXiv:0907.3896] [SPIRES].

    ADS  Google Scholar 

  46. L. Del Debbio, A. Patella and C. Pica, Higher representations on the lattice: numerical simulations. SU(2) with adjoint fermions, Phys. Rev. D 81 (2010) 094503 [arXiv:0805.2058] [SPIRES].

    ADS  Google Scholar 

  47. S.J. Brodsky, G. de Teramond and A. Deur, AdS/QCD, Light-Front Holography and the Nonperturbative Running Coupling, Int. J. Mod. Phys. A 25 (2010) 5009 [arXiv:1002.4660] [SPIRES].

    ADS  Google Scholar 

  48. B. Holdom, Raising the Sideways Scale, Phys. Rev. D 24 (1981) 1441 [SPIRES].

    ADS  Google Scholar 

  49. T.W. Appelquist, D. Karabali and L.C.R. Wijewardhana, Chiral Hierarchies and the Flavor Changing Neutral Current Problem in Technicolor, Phys. Rev. Lett. 57 (1986) 957 [SPIRES].

    Article  ADS  Google Scholar 

  50. S. Weinberg, Implications of Dynamical Symmetry Breaking, Phys. Rev. D 13 (1976) 974 [SPIRES].

    ADS  Google Scholar 

  51. L. Susskind, Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory, Phys. Rev. D 20 (1979) 2619 [SPIRES].

    ADS  Google Scholar 

  52. N. Evans, T. Kalaydzhyan, K.-y. Kim and I. Kirsch, Non-equilibrium physics at a holographic chiral phase transition, arXiv:1011.2519 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keun-young Kim.

Additional information

ArXiv ePrint: 1009.5678

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, N., French, J. & Kim, Ky. Holography of a composite inflaton. J. High Energ. Phys. 2010, 145 (2010). https://doi.org/10.1007/JHEP11(2010)145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2010)145

Keywords

Navigation