Skip to main content
Log in

Mathematical modeling and analytical examination of peristaltic transport in flow of Rabinowitsch fluid with Darcy’s law: two-dimensional curved plane geometry

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this paper, the authors presented the effects of space voids and electrical conductivity on the flow of a pseudoplastic (Rabinowitsch) fluid analyzed in a curved two-dimensional plane geometry. The walls of the channel are considered to develop the peristaltic waves along its length. The problem is manipulated under the observations of long wavelength and low Reynolds number approximations. The motion is assumed to be steady by transforming it in a wave frame traveling with the speed of wave. Analytical hybrid perturbation techniques have been incorporated to handle the complicated coupled differential equations. It is found that the results are well in agreement with the existing literature as a special case, evocating the validity of the study. Expressions of velocity, pressure gradient, and stream function have been invoked graphically. It is concluded from the results that porous medium and magnetic field suggest opposite variations of velocity and trapping circulating contours are stretching with magnetic field and contracting with increasing voids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Riaz, A. Razaq, A.U. Awan, Magnetic field and permeability effects on Jeffrey fluid in eccentric tubes having flexible porous boundaries. Journal of Magnetics 22(4), 642–648 (2017)

    Article  Google Scholar 

  2. S. Noreen, Induced Magnetic Field Effects on Peristaltic Flow in a Curved Channel. ZeitschriftfürNaturforschung A, 70(1), 3-9 (2015)

  3. A. Riaz, A. Zeeshan, S. Ahmad, A. Razaq, M. Zubair, Effects of external magnetic field on Non-newtonian two phase fluid in an annulus with peristaltic pumping. Journal of Magnetics 24(1), 62–69 (2019)

    Article  Google Scholar 

  4. A. Zeeshan, N. Ijaz, M.M. Bhatti, Flow analysis of particulate suspension on an asymmetric peristaltic motion in a curved configuration with heat and mass transfer. Mechanics & Industry 19(4), 401 (2018)

    Article  ADS  Google Scholar 

  5. S. Srinivas, M. Kothandapani, The influence of heat and mass transfer on MHD peristaltic flow through a porous space with compliant walls. Applied Mathematics and Computation 213(1), 197–208 (2009)

    Article  MathSciNet  Google Scholar 

  6. E.N. Maraj, N.S. Akbar, N. Nadeem, Mathematical study for peristaltic flow of Williamson fluid in a curved channel. International Journal of Biomathematics 8(1), 1550005 (2015)

    Article  MathSciNet  Google Scholar 

  7. N.S. Akbar, A.W. Butt, Carbon nanotubes analysis for the peristaltic flow in curved channel with heat transfer. Applied Mathematics and Computation 259, 231–241 (2015)

    Article  MathSciNet  Google Scholar 

  8. H. Shamsabadi, S. Rashidi, J.A. Esfahani, Entropy generation analysis for nanofluid flow inside a duct equipped with porous baffles. Journal of Thermal Analysis and Calorimetry 135, 1009–1019 (2019)

    Article  Google Scholar 

  9. R. Alizadeh, N. Karimi, R. Arjmandzadeh, A. Mehdizadeh, Mixed convection and thermodynamic irreversibilities in MHD nanofluid stagnation-point flows over a cylinder embedded in porous media. Journal of Thermal Analysis and Calorimetry 135, 489–506 (2019)

    Article  Google Scholar 

  10. T. Hayat, B. Ahmed, F.M. Abbasi, A. Alsaedi, Numerical investigation for peristaltic flow of Carreau-Yasuda magneto-nanofluid with modified Darcy and radiation. Journal of Thermal Analysis and Calorimetry 135, 1359–1367 (2019)

    Article  Google Scholar 

  11. J. Stiller, K. Koal, W.E. Nagel, J. Pal, A. Cramer, Liquid metal flows driven by rotating and traveling magnetic fields. The European Physical Journal Special Topics 220(1), 111–122 (2013)

    Article  ADS  Google Scholar 

  12. G. Sucharitha, K. Vajravelu, P. Lakshminarayana, Effect of heat and mass transfer on the peristaltic flow of a Jeffrey nanofluid in a tapered flexible channel in the presence of aligned magnetic field. The European Physical Journal Special Topics 228(12), 2713–2728 (2019)

    Article  ADS  Google Scholar 

  13. R. Meenakumari, P. Lakshminarayana, K. Vajravelu, Unsteady MHD flow of a Williamson nanofluid on a permeable stretching surface with radiation and chemical reaction effects. The European Physical Journal Special Topics, 1-16 (2021)

  14. S. P. Samrat, M.G. Reddy, N. Sandeep, Buoyancy effect on magnetohydrodynamic radiative flow of Casson fluid with Brownian moment and thermophoresis. The European Physical Journal Special Topics, 1-9 (2021)

  15. M. Trivedi, M.S. Ansari, Unsteady Casson fluid flow in a porous medium with inclined magnetic field in presence of nanoparticles. The European Physical Journal Special Topics 228(12), 2553–2569 (2019)

    Article  ADS  Google Scholar 

  16. M.I. Khan, Y.M. Chu, F. Alzahrani, A. Hobiny, Comparative analysis of Al2O3-47 nm and Al2O3-36 nm hybrid nanoparticles in a symmetric porous peristaltic channel. Physica Scripta 96(5), 055005 (2021)

    Article  ADS  Google Scholar 

  17. N. Khan, M. Riaz, M.S. Hashmi, S.U. Khan, I. Tlili, M.I. Khan, M. Nazeer, Soret and Dufour features in peristaltic motion of chemically reactive fluid in a tapered asymmetric channel in the presence of Hall current. Journal of Physics Communications 4(9), 095009 (2020)

    Article  ADS  Google Scholar 

  18. S. Farooq, M.I. Khan, M. Waqas, T. Hayat, A. Alsaedi, Transport of hybrid type nanomaterials in peristaltic activity of viscous fluid considering nonlinear radiation, entropy optimization and slip effects. Computer Methods and Programs in Biomedicine. 184, 105086 (2020)

    Article  Google Scholar 

  19. V.K. Narla, D. Tripathi, O.A. Bég, A. Kadir, Modeling transient magnetohydrodynamic peristaltic pumping of electroconductive viscoelastic fluids through a deformable curved channel. Journal of Engineering Mathematics 111(1), 127–143 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  20. M. Qasim, Z. Ali, A. Wakif, Z. Boulahia, Numerical simulation of MHD peristaltic flow with variable electrical conductivity and Joule dissipation using generalized differential quadrature method. Communications in Theoretical Physics 71(5), 509 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  21. C.H. Amanulla, A. Wakif, Z. Boulahia, M.S. Reddy, N. Nagendra, Numerical investigations on magnetic field modeling for Carreau non-Newtonian fluid flow past an isothermal sphere. Journal of the Brazilian Society of Mechanical Sciences and Engineering 40(9), 462 (2018)

    Article  Google Scholar 

  22. S. E. Ahmed, Z. A. Raizah, A. M. Aly, Three-dimensional flow of a power-law nanofluid within a cubic domain filled with a heat-generating and 3D-heterogeneous porous medium. The European Physical Journal Special Topics, 1-15 (2021)

  23. R. N. Kumar, R. P. Gowda, B. J. Gireesha, B. C. Prasannakumara, Non-Newtonian hybrid nanofluid flow over vertically upward/downward moving rotating disk in a Darcy–Forchheimer porous medium. The European Physical Journal Special Topics, 1-11 (2021)

  24. A. Jarray, Z. Mehrez, A. El Cafsi, Mixed convection ag-mgo/water hybrid nanofluid flow in a porous horizontal channel. The European Physical Journal Special Topics 228(12), 2677–2693 (2019)

    Article  ADS  Google Scholar 

  25. T. Hayat, S. Ayub, A. Alsaedi, Homogeneous-heterogeneous reactions in curved channel with porous medium. Results in Physics 9, 1455–1461 (2018)

    Article  ADS  Google Scholar 

  26. S.A. Mohammadein, A.K. Abu-Nab, Peristaltic flow of a newtonian fluid through a porous medium surrounded vapour bubble in a curved channel. Journal of Nanofluids 8(3), 651–656 (2019)

    Article  Google Scholar 

  27. K. Vajravelu, S. Sreenadh, P. Lakshminarayana, G. Sucharitha, M.M. Rashidi, Peristaltic flow of Phan-Thien-Tanner fluid in an asymmetric channel with porous medium. Journal of Applied Fluid Mechanics 9(4), 1615–1625 (2016)

    Google Scholar 

  28. A.M. Abd-Alla, S.M. Abo-Dahab, R.D. Al-Simery, Effect of rotation on peristaltic flow of a micropolar fluid through a porous medium with an external magnetic field. Journal of magnetism and Magnetic materials 348, 33–43 (2013)

    Article  ADS  Google Scholar 

  29. M.M. Rashidi, M. Keimanesh, O.A. Bég, T.K. Hung, Magnetohydrodynamicbiorheological transport phenomena in a porous medium: a simulation of magnetic blood flow control and filtration. International Journal for Numerical Methods in Biomedical Engineering 27(6), 805–821 (2011)

    Article  Google Scholar 

  30. M.G. Reddy, Heat and mass transfer on magnetohydrodynamic peristaltic flow in a porous medium with partial slip. Alexandria Engineering Journal 55(2), 1225–1234 (2016)

    Article  Google Scholar 

  31. N.S. Akbar, A.W. Butt, Heat transfer analysis of Rabinowitsch fluid flow due to metachronal wave of cilia. Results in physics 5, 92–98 (2015)

    Article  ADS  Google Scholar 

  32. H. Vaidya, C. Rajashekhar, G. Manjunatha, K.V. Prasad, Effect of variable liquid properties on peristaltic flow of a Rabinowitsch fluid in an inclined convective porous channel. The European Physical Journal Plus 134(5), 231 (2019)

    Article  ADS  Google Scholar 

  33. H. Vaidya, C. Rajashekhar, G. Manjunatha, K.V. Prasad, Peristaltic mechanism of a Rabinowitsch fluid in an inclined channel with complaint wall and variable liquid properties. Journal of the Brazilian Society of Mechanical Sciences and Engineering 41(1), 52 (2019)

    Article  Google Scholar 

  34. H. Sadaf, S. Nadeem, Analysis of combined convective and viscous dissipation effects for peristaltic flow of Rabinowitsch fluid model. Journal of Bionic Engineering 14(1), 182–190 (2017)

    Article  Google Scholar 

  35. H. Vaidya, C. Rajashekhar, G. Manjunatha, K. V. Prasad, O. D. Makinde, S. Sreenadh, Peristaltic motion of non-Newtonian fluid with variable liquid properties in a convectively heated nonuniform tube: Rabinowitsch fluid model. Journal of Enhanced Heat Transfer, 26(3) (2019)

  36. N. Ali, M. Sajid, K. Javid, R. Ahmed, Peristaltic flow of Rabinowitsch fluid in a curved channel: mathematical analysis revisited. ZeitschriftfürNaturforschung A, 72(3), 245-251 (2017)

  37. U.P. Singh, R.S. Gupta, V.K. Kapur, On the steady performance of annular hydrostatic thrust bearing: Rabinowitsch fluid model. Journal of tribology 134(4), 044502 (2012)

    Article  Google Scholar 

  38. A. K. Rahul, P. S. Rao, Rabinowitsch fluid flow with viscosity variation: Application of porous rough circular stepped plates. Tribology International, 106635 (2020)

  39. N. Imran, M. Javed, M. Sohail, S. Farooq, M. Qayyum, Outcome of slip features on the peristaltic flow of a Rabinowitschnanofluid in an asymmetric flexible channel. Multidiscipline Modeling in Materials and Structures (2020)

  40. M. Zahid, M. Zafar, M.A. Rana, M.T.A. Rana, M.S. Lodhi, Numerical analysis of the forward roll coating of a rabinowitsch fluid. J. Plast. Film Sheeting 36, 191–208 (2020)

    Article  Google Scholar 

  41. J.H. He, Homotopy perturbation method: a new nonlinear analytical technique. Applied Mathematics and computation 135(1), 73–79 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha 61413, Saudi Arabia for funding this work through research groups program under Grant No. R.G.P-2/88/41.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ijaz Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, WM., Riaz, A., Ramesh, K. et al. Mathematical modeling and analytical examination of peristaltic transport in flow of Rabinowitsch fluid with Darcy’s law: two-dimensional curved plane geometry. Eur. Phys. J. Spec. Top. 231, 545–555 (2022). https://doi.org/10.1140/epjs/s11734-021-00421-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00421-5

Navigation