Skip to main content
Log in

Heat and mass transfer analysis on non-Newtonian fluid motion driven by peristaltic pumping in an asymmetric curved channel

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The foremost aim of the present study is to present a novel exploration of the peristaltic flow of Johnson–Segalman fluid in asymmetric curved channel in the presence of heat and mass transfer. The exceedingly non-linear governing equations are relatively simplified by adopting the assumptions of long wavelength and small Reynolds number approximations. The analytical expressions for the stream function, pressure gradient, temperature and concentration of the fluid have obtained by using the perturbation technique. Further, the solution acquired by the perturbation method is validated with the existing results made available in the literature. Lastly, the physical features of pertinent flow variables and geometric parameters have been discussed by plotting the graphs and stream functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.H. Shapiro, Proceedings of the workshop ureteral reftm children (Nat. Acad. Sci, Washington, DC, 1967)

    Google Scholar 

  2. A.H. Shapiro, M.Y. Jaffrin, J. Fluid Mech. 37, 799–825 (1969)

    Article  ADS  Google Scholar 

  3. T. Hayat, M. Javed, S. Asghar, Phys. Lett. A 372, 5026–5036 (2008)

    Article  ADS  Google Scholar 

  4. KhS Mekheimer, Y. Abd elmaboud, Physica A 387, 2403–2415 (2008)

    Article  ADS  Google Scholar 

  5. K. Vajravelu, S. Sreenadh, P. Lakshminarayana, Comm. Nonlinear Sci. Numer. Simul. 16, 3107–3125 (2011)

    Article  ADS  Google Scholar 

  6. G. Radhakrishnamacharya, C.H. Srinivasulu, Comp. Rend. Mecaniq. 335, 369–373 (2007)

    Article  ADS  Google Scholar 

  7. M.M. Rashidi, M.M. Bhatti, M.A. Abbas, M. El-Sayed Ali, Entropy 18, 117 (20016)

  8. T. Hayat, S. Hina, A.A. Hendi, S. Asghar, Int. J. Heat Mass Transf. 55, 3386–339 (2012)

    Article  Google Scholar 

  9. B. Rushi Kumar, R. Sivaraj, Int. J. Heat Mass Transf. 56, 370–379 (2013)

    Article  Google Scholar 

  10. KhS Mekheimer, Y. Abdelmaboud, A.I. Abdellateef, Appl. Bion. Biomech. 10, 19–27 (2013)

    Article  Google Scholar 

  11. P.M. Patil, M. Roy, A. Shashikant, S. Roy, E. Momoniat, Int. J. Heat Mass Trans. 124, 298–306 (2018)

    Article  Google Scholar 

  12. O. Eytan, D. Elad, Bull. Math. Biol. 61, 221–238 (1999)

    Article  Google Scholar 

  13. M. Mishra, A.R. Rao, Zeitsch. für angewandte Math. Phys. 54, 532–550 (2003)

    Article  ADS  Google Scholar 

  14. M.H. Haroun, Commun. Non linear Sci. Numer. Simul. 12, 1464–1480 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  15. M.V. Subba Reddy, A.R. Rao, S. Sreenath, Int. J. Non-linear Mech. 42, 1153–1161 (2007)

    Article  Google Scholar 

  16. M. Kothandapani, S. Srinivas, Int. J. Nonlinear Mech. 43, 915–924 (2008)

    Article  ADS  Google Scholar 

  17. N. Ali, T. Hayat, Y. Wang, Int. J. Numer. Methods Fluids 64, 992–1013 (2009)

    Google Scholar 

  18. M. Awais, S. Farooq, H. Yasmin, T. Hayat, A. Alsaedi, Int. J. Biomath. 7, 15 (2014)

    Article  Google Scholar 

  19. A.M. Abd-Alla, S.M. Abo-Dahab, J. Magn. Magn. Mater 374, 680–689 (2015)

    Article  ADS  Google Scholar 

  20. Y. Wang, T. Hayat, N. Ali, M. Oberlack, Physica A 387, 347–362 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  21. M. Kothandapani, V. Pushparaj, Int. J. Numer. Heat Fluid Flow 27(9), 1986–2014 (2017)

    Article  Google Scholar 

  22. H. Sato, T. Kawai, T. Fujita, M. Okabe, Trans. Jpn. Soc. Mech. Eng. B 66, 679–685 (2000)

    Article  Google Scholar 

  23. N. Ali, M. Sajid, Z. Abbas, T. Javed, Eur. J. Mech. B/Fluids 29, 387–394 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  24. N. Ali, M. Sajid, T. Hayat, Z. Naturforschung A 65, 191–196 (2010)

    Article  ADS  Google Scholar 

  25. S. Noreen, T. Hayat, A. Alsaedi, Z. Naturforschung A 29, 387–439 (2010)

    Google Scholar 

  26. T. Hayat, S. Hina, A.A. Hendi, S. Asghar, Int. J. Heat Mass Trans. 54, 5126–5136 (2011)

    Article  Google Scholar 

  27. N.S. Akbar, E.N. Maraj, Adil Wahid Butt, Eur. Phys. J. Plus. 129, 83 (2014)

    Article  Google Scholar 

  28. S. Nadeem, E.N. Maraj, N.S. Akbar, Appl. Nano Sci. 4, 511–521 (2014)

    Article  ADS  Google Scholar 

  29. N.S. Akbar, Adil Wahid Butt, Appl. Math. Comput. 259, 231–241 (2015)

    MathSciNet  Google Scholar 

  30. T. Hayat, S. Farooq, B. Ahmad, A. Alsaedi, J. Mol. Liq. 223, 469–488 (2016)

    Article  Google Scholar 

  31. N. Ali, K. Javid, M. Sajid, A. Zaman, T. Hayat, Int. J. Heat Mass Trans. 94, 500–508 (2016)

    Article  Google Scholar 

  32. T. Hayat, S. Nawaz, A. Alsaedi, M. Rafiq, Res. Phy. 982–990 (2017)

  33. V.K. Narla, D. Tripathi, Microvasc. Res. 123, 25–34 (2019)

    Article  Google Scholar 

  34. S. Hina, T. Hayat, A. Slsaedi, Int. J. Heat Mass Trans. 55, 3511–3521 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kothandapani.

Appendix

Appendix

$$\begin{aligned} k_{1}= & {} \frac{1}{k}, A_{1} =\frac{(k_{1} h_{2} +1)^{2}-(k_{1} h_{1} +1)^{2}}{(k_{1} h_{1} +1)\left( {k_{1} h_{2} +1} \right) }, \\ A_{2}= & {} 2k_{1} (k_{1} h_{1} +1)(k_{1} h_{2} +1)\log \left( {\frac{k_{1}h_{2} +1}{k_{1} h_{1} +1}} \right) , \\ A_{3}= & {} \frac{(k_{1} h_{2} +1)^{2}-(k_{1} h_{1} +1)^{2}}{(k_{1} h_{1} +1)} \\&-2(k_{1} h_{1} +1)\log \left( {\frac{k_{1} h_{2} +1}{k_{1} h_{1} +1}} \right) ,\\ A_{4}= & {} \left( {(k_{1} h_{2} +1)^{2}-(k_{1} h_{1} +1)^{2}} \right) k_{1} \left( {k_{1} h_{1} +1} \right) \\&\left( {1+2\log \left( {k_{1} h_{1} +1} \right) } \right) \\&-2k_{1} (k_{1} h_{1} +1)\left( {(k_{1} h_{2} +1)^{2}\log \left( {k_{1} h_{2} +1} \right) } \right) \\&-(k_{1} h_{1} +1)^{2}\log \left( {k_{1} h_{1} +1} \right) \\ B_{1}= & {} (k_{1} h_{1} +1)^{2}-(k_{1} h_{2} +1)^{2} \\&-k_{1} \left( {k_{1} h_{1} +1} \right) (q_{0} +h_{1} -h_{2} ),\\ A= & {} \frac{2k_{1} A_{4} (h_{1} -h_{2} )-2A_{2} B_{1} }{k_{1} (A_{1} A_{4} -A_{2} A_{3} )},\\ B= & {} \frac{F_{0} }{2}-A\log (k_{1} h_{2} +1)-C\log (k_{1} h_{2} +1)(k_{1} h_{2} +1)^{2} \\&-D(k_{1} h_{2} +1)^{2}-\frac{(k_{1} h_{2} +1)}{k_{1} }, \\ C= & {} \frac{2B_{1} -k_{1} AA_{3} }{A_{4} }, \end{aligned}$$
$$\begin{aligned} D= & {} \frac{F_{0} +h_{1} -h_{2} -A\log \left( {\frac{k_{1} h_{2} +1}{k_{1} h_{1} +1}} \right) -C\left( {\log (k_{1} h_{2} +1)(k_{1} h_{2} +1)^{2}-\log (k_{1} h_{1} +1)(k_{1} h_{1} +1)^{2}} \right) }{(k_{1} h_{2} +1)^{2}-(k_{1} h_{1} +1)^{2}} \end{aligned}$$
$$\begin{aligned} J_{1}= & {} \frac{(1-\xi ^{2})\eta _{1} }{\eta _{1} +\mu },R_{1} =(1-\xi ^{2}), \\ l_{01}= & {} -2\left( {2+4k_{1}^{3} C^{2}+\left( {C-2D} \right) \left( {-k_{1} +4k_{1}^{2} } \right) } \right) , \\ l_{02}= & {} k_{1}^{2} \left( {C-4k_{1}^{2} C^{2}-2D} \right) , \\ l_{03}= & {} 4k_{1} A\left( {2+k_{1} \left( {A+2h_{1} } \right) } \right) , \end{aligned}$$
$$\begin{aligned} l_{1}= & {} \frac{Br}{4}\left\{ \frac{l_{01} h_{1} +l_{02} h_{1}^{2}-l_{03} }{(1+k_{1} h_{1} )^{2}} \right. \\&\quad +8A(-1+8k_{1} C)\log (k_{1} h_{1} +1)^{2} \\&\quad \left. + \frac{8[1-k_{1} (C-2D)-2k_{1}^{2} (4D+C(-2+h_{1} ))+k_{1}^{3} C(4C-(-8+h_{1} )h_{1} )]}{k_{1} }\right\} \\ l_{2}= & {} \frac{Br}{4}\left\{ \frac{l_{01} h_{2} +l_{02} h_{2}^{2}-l_{03} }{(1+k_{1} h_{2} )^{2}}+8A(-1+8k_{1} C)\log (k_{1} h_{2} +1)^{2}\right. \\&\quad \left. + \frac{8[1-k_{1} (C-2D)-2k_{1}^{2} (4D+C(-2+h_{2} ))+k_{1}^{3} C(4C-(-8+h_{2} )h_{2} )]}{k_{1} }\right\} \end{aligned}$$
$$\begin{aligned} C_{1}= & {} \frac{k_{1} \left( {1+l_{1} -l_{2} } \right) }{\log \left( {k_{1} h_{2} +1} \right) -\log \left( {k_{1} h_{1} +1} \right) },\\ C_{2}= & {} -l_{1} -\frac{C_{1} \log \left( {k_{1} h_{1} +1} \right) }{k_{1}},\\ j_{11}= & {} \frac{-192A^{3}J_{1} k_{1}^{4} }{576},j_{12} =\frac{192A^{2}CJ_{1} k_{1}^{4} }{64},\\ j_{01}= & {} k_{1} \left( {k_{1} h_{1} +1} \right) +\frac{j_{11} }{\left( {k_{1} h_{1} +1} \right) ^{4}}+\frac{j_{12} }{\left( {k_{1} h_{1} +1} \right) ^{2}}, \\ j_{02}= & {} k_{1}^{2} -\frac{2k_{1} j_{12} }{\left( {k_{1} h_{1} +1} \right) ^{3}}-\frac{4k_{1} j_{11} }{\left( {k_{1} h_{1} +1} \right) ^{5}}, \\ j_{03}= & {} k_{1} \left( {k_{1} h_{2} +1} \right) +\frac{j_{11} }{\left( {k_{1} h_{2} +1} \right) ^{4}}+\frac{j_{12} }{\left( {k_{1} h_{2} +1} \right) ^{2}}, \\ j_{04}= & {} k_{1}^{2} -\frac{2k_{1} j_{12} }{\left( {k_{1} h_{2} +1} \right) ^{3}}-\frac{4k_{1} j_{11} }{\left( {k_{1} h_{2} +1} \right) ^{5}},\\ A_{11}= & {} \log (k_{1} h_{2} +1)-\log (k_{1} h_{1} +1);\\ A_{12}= & {} (k_{1} h_{2} +1)^{2}-(k_{1} h_{1} +1)^{2}, \\ A_{13}= & {} (k_{1} h_{2} +1)^{2}\log (k_{1} h_{2} +1) \\&-(k_{1} h_{1} +1)^{2}\log (k_{1} h_{1} +1),\\ A_{14}= & {} q_{1} +j_{01} -j_{03}, \\ A_{15}= & {} (k_{1} h_{2} +1)^{2}\left\{ {1+2\log (k_{1} h_{2} +1)} \right\} \\&-(k_{1} h_{1} +1)^{2}\left\{ {1+\log (k_{1} h_{1} +1)} \right\} , \\ A_{16}= & {} j_{02} (k_{1} h_{1} +1)-j_{04} (k_{1} h_{2} +1),\\ A_{17}= & {} \frac{-j_{02} A_{11} (k_{1} h_{1} +1)}{k_{1} }-A_{14},\\ A_{18}= & {} 2A_{11} (k_{1} h_{1} +1)^{2}-A_{12}, \\ A_{19}= & {} A_{11} (k_{1} h_{1} +1)^{2}\left( {1+2\log (k_{1} h_{1} +1)} \right) -A_{13}, \\ c_{14}= & {} \frac{2k_{1} A_{12} A_{17} -A_{16} A_{18} }{2k_{1} A_{12} A_{19} -A_{15} A_{18} }, \\ c_{13}= & {} \frac{A_{17} -c_{14} A_{19} }{A_{18}}, \\ c_{12}= & {} \frac{A_{14} -c_{13} A_{12} -c_{14} A_{13} }{A_{11}}, \\ c_{11}= & {} \frac{F_{1} }{2}-c_{12} \log (k_{1} h_{2} +1) \\&-c_{14} \log (k_{1} h_{2} +1)(k_{1} h_{2} +1)^{2}-c_{13} (k_{1} h_{2} +1)^{2}-j_{03}, \\ j_{21}= & {} -8k_{1}^{4} (Ac_{14} +Cc_{12} -8AC^{3}R_{1} k_{1}^{4} ), \\ j_{22}= & {} -4k_{1}^{3} C(k_{1}^{2} -1),j_{23} =8k_{1}^{4} C(c_{14} -2C^{3}R_{1} k_{1}^{4} ), \\ j_{24}= & {} 4Ak_{1}^{3} (k_{1}^{2} -1),\\ j_{25}= & {} 8k_{1}^{4} (Ac_{12} +16A^{2}C^{2}J_{1} k_{1}^{4} -12A^{2}C^{2}R_{1} k_{1}^{4} ), \\ j_{26}= & {} 32A^{3}Ck_{1}^{8} (-5J_{1} +R_{1} ), \\ j_{27}= & {} 16A^{4}k_{1}^{8} (2J_{1} -R_{1}),\\ K_{1}= & {} -\frac{Br}{k_{1}^{2} }\left( \frac{j_{21} }{2}\left( {k_{1} h_{1} +1} \right) ^{2}+j_{22} \left( {k_{1} h_{1} +1} \right) ^{2} \right. \\&\quad +\frac{j_{23} }{4}\left( {k_{1} h_{1} +1} \right) ^{2}+\frac{j_{24} }{\left( {k_{1} h_{1} +1} \right) } \\&\quad +\frac{j_{25} }{4\left( {k_{1} h_{1} +1} \right) ^{2}}+\frac{j_{26}}{16\left( {k_{1} h_{1} +1} \right) ^{4}} \\&\quad \left. +\frac{j_{27} }{36\left( {k_{1} h_{1} +1} \right) ^{6}} \right) , \\ K_{2}= & {} replace\,h_{1\,\,} by\,\,h_{2} \,in\,\,K_{1}\\ b_{12}= & {} \frac{k_{1} \left( {K_{1} -K_{2} } \right) }{\log \left( {k_{1} h_{2} +1} \right) -\log \left( {k_{1} h_{1} +1} \right) }, \\ b_{11}= & {} -K_{1} -\frac{b_{12} \log \left( {k_{1} h_{1} +1} \right) }{k_{1} }. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magesh, A., Kothandapani, M. Heat and mass transfer analysis on non-Newtonian fluid motion driven by peristaltic pumping in an asymmetric curved channel. Eur. Phys. J. Spec. Top. 230, 1447–1464 (2021). https://doi.org/10.1140/epjs/s11734-021-00035-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00035-x

Navigation