Skip to main content
Log in

Numerical and regression analysis of Cu-nanoparticles flows in distinct base fluids through a symmetric non-uniform channel

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This article demonstrates the heat enhancement of nanofluid flow in a stretched non-uniform channel by the suspension of Cu-nanoparticles in various base fluids such as water, engine oil, ethylene glycol, and kerosene. Guided by appropriate similarity transformations, the formulated expressions are non-dimensionalized and tackled numerically by adopting spectral quasi-linearization method (SQLM). To check the convergence of the computational results, a comparison has been done and an admirable agreement has been noticed with the published results in limiting cases. Computational results are presented graphically for the various physical constraints such as Reynolds number, stretching parameter, Hartman number, Prandtl number, nanoparticle volume fraction, and angle of the channel. A method of multiple regression through data points is presented to study the role of numerous parameters on skin friction and rate of heat transmission along the stretchable walls. It is worth mentioning that the higher heat transmission rate is noticed in divergent channel case compared to the case of convergent channel. The augmentation of heat transmission is attained maximum for kerosene-based Cu-nanoparticles and minimum for water-based Cu-nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(U_{_{C} }\) :

Centerline velocity \(\left( {\mathrm{ms}^{-1}} \right) \)

\(T_{_{W} }\) :

Temperature of the channel wall \(\left( K \right) \)

\(U_{_{W} }\) :

Velocity of the channel wall \(\left( {\mathrm{ms}^{-1}} \right) \)

\(\mu _{nf}\) :

Dynamic viscosity of nanofluid \((1\,kgm^{-1}s^{-1})\)

\(\rho _{nf}\) :

Density of nanofluid \(\left( {\mathrm{kgm}^{-3}} \right) \)

\(\alpha \) :

Angle of the channel

\(\sigma _{nf}\) :

Electric conductivity of nanofluid \(\left( {s\mathrm{m}^{-1}} \right) \)

\(k_{nf}\) :

Thermal conductivity of nanofluid \(\left( {\mathrm{W}/\mathrm{mK}} \right) \)

\(\left( {\rho cp} \right) _{nf}\) :

Heat capacity of the nanofluid

\(\phi \) :

Volume fraction of nanoparticles

\(\mu _{f}\) :

Base fluid viscosity \(\left( {\mathrm{ms}^{-1}} \right) \)

\(k_{f},k_{s}\) :

Thermal conductivity of base fluid and nanoparticles \(\left( {\mathrm{W}/\mathrm{mK}} \right) \)

\(\rho _{f},\rho _{s} \) :

Densities of base fluid and nanoparticles \(\left( {\mathrm{kgm}^{-3}} \right) \)

\(\sigma _{f},\sigma _{s}\) :

Electric conductivity of base fluid and nanoparticles \(\left( {\mathrm{sm}^{-1}} \right) \)

\(\hbox {Re} =\frac{U_{C} \alpha }{\nu _{F} }\) :

Reynolds number

\(\Pr =\frac{\left( {\rho c_{p} } \right) _{f} U_{C} }{k_{nf}}\) :

Prandtl number

\(Ha=\,\sqrt{\frac{\sigma _{F} B_{0}^{2}}{\mu _{F} }}\) :

Hartmann number

References

  1. X. Wang, A.S. Mujumdar, A review on nanofluids-Part I: theoretical and numerical investigations. Br. J. Chem. Eng. 25, 613–630 (2008)

    Article  Google Scholar 

  2. G. Ramesh, N.K. Prabhu, Review of thermo-physical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment. Nanoscale Res. Lett. 6, 334 (2011)

    Article  ADS  Google Scholar 

  3. D.K. Devendiranand, V.A. Amirtham, A review on preparation, characterization, properties and applications of nanofluids. Renew. Sustain. Energy Rev. 60, 21–40 (2016)

    Article  Google Scholar 

  4. N. Ali, J.A. Teixeira, A. Addali, A review on nanofluids: fabrication, stability, and thermophysical properties. J. Nanomater. 2018, 6978130 (2018)

    Article  Google Scholar 

  5. S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, Conference: International Mechanical Engineering Congress and Exhibition. San Francisco, CA 66, 99–105 (1995)

    Google Scholar 

  6. K. Khanafer, K. Vafai, M. Lightstone, Buoyancy-driven heat transfer enhancement in a two dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 46, 3639–3653 (2003)

    Article  MATH  Google Scholar 

  7. J. Buongiorno, Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2006)

    Article  Google Scholar 

  8. R. Tiwari, M. Das, Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50, 2002–2018 (2007)

    Article  MATH  Google Scholar 

  9. M. Turkyilmazoglu, Buongiorno model in a nanofluid filled asymmetric channel fulfilling zero net particle flux at the walls. Int. J. Heat Mass Transf. 126, 974–979 (2018)

    Article  Google Scholar 

  10. M. Izadi, H.F. Oztop, M.A. Sheremet, S.A.M. Mehryan, N. Abu-Hamdeh, Coupled FHD-MHD free convection of a hybrid nanoliquid in an inversed T-shaped enclosure occupied by partitioned porous media. Numer. Heat Transf. Part A: Appl. 76, 479–498 (2019)

    Article  ADS  Google Scholar 

  11. M. Turkyilmazoglu, Fully developed slip flow in a concentric annuli via single and dual phase nanofluids models. Comput. Methods Programs Biomed. 179, 104997 (2019)

    Article  Google Scholar 

  12. M. Sheikholeslami, A. Arabkoohsar, H. Babazadeh, Modeling of nanomaterial treatment through a porous space including magnetic forces. J. Therm. Anal. Calorim. 140, 825–834 (2020)

    Article  Google Scholar 

  13. M. Izadi, M.A. Sheremet, S.A.M. Mehryan, I. Pop, H.F. Oztop, N. Abu-Hamdeh, MHD thermogravitational convection and thermal radiation of a micropolar nanoliquid in a porous chamber. Int. Commun. Heat Mass Transf. 110, 104409 (2020)

    Article  Google Scholar 

  14. K. Hosseinzadeh, S. Roghani, A.R. Mogharrebi, A. Asadi, M. Waqas, D.D. Ganji, Investigation of cross-fluid flow containing motile gyrotactic microorganisms and nanoparticles over a three-dimensional cylinder. Alex. Eng. J. 59, 3297–3307 (2020)

    Article  Google Scholar 

  15. K. Hosseinzadeh, S. Salehi, M.R. Mardani, F.Y. Mahmoudi, M. Waqas, D.D. Ganji, Investigation of nano-Bioconvective fluid motile microorganism and nanoparticle flow by considering MHD and thermal radiation. Inf. Med. Unlock. 21, 100462 (2020)

    Article  Google Scholar 

  16. M. Gholinia, K. Hosseinzadeh, D.D. Ganji, Investigation of different base fluids suspend by CNTs hybrid nanoparticle over a vertical circular cylinder with sinusoidal radius. Case Stud. Thermal Eng. 21, 100666 (2020)

    Article  Google Scholar 

  17. K. Hosseinzadeh, A. Asadi, A.R. Mogharrebi, M.E. Azari, D.D. Ganji, Investigation of mixture fluid suspended by hybrid nanoparticles over vertical cylinder by considering shape factor effect. J. Therm. Anal. Calorim. 143, 1081–1095 (2020)

    Article  Google Scholar 

  18. Y. Song, H. Waqas, K. Al-Khaled, U. Farooq, S.U. Khan, M.I. Khan, Y. Chu, S. Qayyum, Bioconvection analysis for Sutterby nanofluid over an axially stretched cylinder with melting heat transfer and variable thermal features: A Marangoni and solutal model. Alex. Eng. J. 60, 4663–4675 (2021)

    Article  Google Scholar 

  19. K. Hosseinzadeh, S. Roghani, R. Mogharrebi, A. Asadi, D.D. Ganji, Optimization of hybrid nanoparticles with mixture fluid flow in an octagonal porous medium by effect of radiation and magnetic field. J. Therm. Anal. Calorim. 143, 1413–1424 (2021)

    Article  Google Scholar 

  20. Y. Akbar, F.M. Abbasi, S.A. Shehzad, Effectiveness of Hall current and ion slip on hydromagnetic biologically inspired flow of Cu-Fe3O4/H2O hybrid nanomaterial. Phys. Scr. 96, 025210 (2021)

    Article  ADS  Google Scholar 

  21. R.M. Terril, Slow laminar flow in a converging or diverging channel with suction at one wall and blowing at the other wall. Z. Angew. Math. Phys. 16, 306–308 (1965)

    Article  MATH  Google Scholar 

  22. J.S. Roy, P. Nayak, Steady two dimensional incompressible laminar visco-elastic flow in a converging and diverging channel. Acta Mech. 43, 129–136 (1982)

    Article  MATH  Google Scholar 

  23. E.M. Sparrow, R. Ruiz, L.F.A. Azevedo, Experiments and numerical investigation of natural convection in convergent vertical channels. Int. J. Heat Mass Transf. 31, 907–915 (1988)

    Article  Google Scholar 

  24. S. Baris, Flow of a second grade visco-elastic fluid in a porous converging channel. Turk. J. Eng. Environ. Sci. 27, 73–81 (2003)

    Google Scholar 

  25. R. Hosseini, S. Poozesh, S. Dinarvand, MHD flow of an incompressible viscous fluid through convergent or divergent channels in presence of a high magnetic field. J. Appl. Math. 2012, 157067 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Hatami, D.D. Ganji, MHD nanofluid flow analysis in divergent and convergent Channels using WRM’s and numerical method. Int. J. Numer. Meth. Heat Fluid Flow 24, 1191–1203 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. U. Khan, N. Ahmed, S.T. Mohyud-Din, Soret Dufour effects on flow in converging and diverging channels with chemical reaction. Aerospace and Technology 49, 135–143 (2016)

    Article  Google Scholar 

  28. Adnan, U. Khan, N. Ahmed, S.T. Mohyud-Din, Thermo-diffusion and diffusion-thermo effects on flow of second grade fluid between two inclined plane walls. J. Mol. Liq. 224, 1074–1082 (2016)

    Article  Google Scholar 

  29. M.S. Alam, M.A.H. Khan, O.D. Makinde, Magneto-nano fluid dynamics in convergent-divergent channel and its inherent irreversibility, Defect and Diffusion. Forum 377, 95–110 (2017)

    Google Scholar 

  30. S. Ramprasad, S.H.C.V.S. Bhatta, B. Malikarjuna, D. Srinivasacharya, Two-phase particulate suspension flow in convergent and divergent channels: a numerical model. Int. J. Appl. Comput. Math. 3, 843–858 (2017)

    Article  MathSciNet  Google Scholar 

  31. M. Usman, R.U. Haq, M. Hamid, W. Wang, Least square study of heat transfer of water based Cu and Ag nano particles along a converging/diverging channel. J. Mol. Liq. 249, 856–867 (2018)

    Article  Google Scholar 

  32. K.G. Kumar, M. Rahimi-Gorji, M.G. Reddy, A.J. Chamkha, I.M. Alarif, Enhancement of heat transfer in a convergent/divergent channel by using carbon nanotubes in the presence of a Darcy-Forchheimer medium. Microsyst. Technol. 26, 323–332 (2020)

    Article  Google Scholar 

  33. M. Turkyilmazoglu, Extending the traditional Jeffery–Hamel flow to stretchable convergent/divergent channels. Comput. Fluids 100, 196–203 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. M.B. Gerdroodbary, M.R. Takami, D.D. Ganji, Investigation of thermal radiation on traditional Jeffery–Hamel flow to stretchable convergent/divergent channels. Case Stud. Thermal Eng. 6, 28–39 (2015)

    Article  Google Scholar 

  35. A.S. Dogonchi, D.D. Ganji, Study of nanofluid flow and heat transfer between non-parallel stretching walls considering Brownian motion. J. Taiwan Inst. Chem. Eng. 69, 1–13 (2016)

    Article  Google Scholar 

  36. S.T. Mohyud-Din, U. Khan, N. Ahmed, B. Bin-Mohsin, Heat and mass transfer analysis for MHD flow of nanofluid in convergent/divergent channels with stretchable walls using Buongiorno’s model. Neural Comput. Appl. 28, 4079–4092 (2017)

    Article  Google Scholar 

  37. A.K. Pandey, M. Kumar, MHD flow inside a stretching/shrinking convergent/divergent channel with heat generation/absorption and viscous-ohmic dissipation utilizing cu-water nanofluid. Comput. Therm. Sci. 10, 457–471 (2018)

    Article  Google Scholar 

  38. A. Mishra, A.K. Pandey, A.J. Chamkha, M. Kumar, Roles of nano particles and heat generation/absorption on MHD flow of Ag-H\(_{2}\)O nanofluid via porous stretching/shrinking convergent/divergent channel. J. Egypt. Math. Soc. 28, 17 (2020)

    Article  MATH  Google Scholar 

  39. G.K. Ramesh, S.A. Shehzad, I. Tlili, Hybrid nanomaterial flow and heat transport in a stretchable convergent/divergent channel: a Darcy–Forchheimer model. Appl. Math. Mech. 41, 699–710 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. S. Ramprasad, S.H.C.V.S. Bhatta, B. Mallikarjuna, Computational study on two-phase MHD buoyancy driven flow in an asymmetric diverging channel. Songklanakarin J. Sci. Technol. 42, 415–423 (2020)

    Google Scholar 

  41. N.A. Adnan, R. Kandasamy, R. Mohammad, Nanoparticle shape and thermal radiation on marangoni water, ethylene glycol and engine oil based Cu, Al\(_{2}\)O\(_{3}\) and SWCNTS. J. Mater. Sci. Eng. 6, 4 (2017)

    Google Scholar 

  42. M. Usman, M. Hamid, R.U. Haq, W. Wang, Heat and fluid flow of water and ethylene-glycol based Cu-nanoparticles between two parallel squeezing porous disks: LSGM approach. Int. J. Heat Mass Transf. 123, 888–895 (2018)

    Article  Google Scholar 

  43. N. Abid, M. Ramzan, J.D. Chung, S. Kadry, Y. Chu, Comparative analysis of magnetized partially ionized copper, copper oxide-water and kerosene oil nanofluid flow with Cattaneo-Christov heat flux. Sci. Rep. 10, 19300 (2020)

    Article  ADS  Google Scholar 

  44. J. Srinivas, B. Mallikarjuna, G.G. Krishna, Entropy generation to predict irreversibilities in poro-elastic film with multiple forces: spectral study. Indian J. Phys. Accepted and published online: https://doi.org/10.1007/s12648-020-01922-0

  45. B. Mallikarjuna, J. Srinivas, G.G. Krishna, O.A. Beg, A. Kadir, Spectral numerical study of entropy generation in magneto-convective visoelastic biofluid flow through poro-elastic media with thermal radiation and buoyancy effects. J. Thermal Sci. Eng. Appl. 14, 011008 (2022)

    Article  Google Scholar 

  46. Z.Z. Ganji, D.D. Ganji, M. Esmaeilpour, Study on nonlinear Jeffery-Hamel flow by He’s semi-analytical methods and comparison with numerical results. Comput. Math. Appl. 58, 2107–2116 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. S.S. Motsa, P. Sibanda, G.T. Marewo, On a new analytical method for flow between two inclined walls. Numer. Algorithm. 61, 499–514 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Shehzad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallikarjuna, B., Ramprasad, S., Shehzad, S.A. et al. Numerical and regression analysis of Cu-nanoparticles flows in distinct base fluids through a symmetric non-uniform channel. Eur. Phys. J. Spec. Top. 231, 557–569 (2022). https://doi.org/10.1140/epjs/s11734-021-00400-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00400-w

Navigation