Skip to main content
Log in

Enhancement of heat transfer in a convergent/divergent channel by using carbon nanotubes in the presence of a Darcy–Forchheimer medium

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This article explores the influence of thermal radiation on the flow and heat transfer of single-walled carbon nanotubes over both a convergent and divergent channel. Flow is induced due to a Darcy–Forchheimer medium. Further, the heat transfer mechanism is analyzed in the presence of a thermal radiation process. Guided by some appropriate similarity transformations, the fundamental PDEs are converted into a self-similar system of coupled non-linear ODEs. The findings are obtained with the help of the Runge–Kutta-45-based shooting method. The roles of the Reynolds number, porosity parameter, inertia coefficient parameter, Prandtl number and radiation parameter are presented graphically. Results are displayed and show that the rate of heat transfer is higher in a divergent channel as compared to a convergent channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(c\) :

Indicating shrinking/stretching parameter

\(Kp\) :

Porosity parameter

\(Fr\) :

Inertia coefficient

\(Re\) :

Reynolds number

\(Pr\) :

Prandtl number

\(R\) :

Radiation parameter

\(C_{f}\) :

Skin friction co efficient

\(Nu\) :

Nusselt number

\(\alpha\) :

Opening angle parameter

\(k_{f}\) :

Thermal conductivity of base fluid

\(k_{nf}\) :

Thermal conductivity of nanofluid

\(U\) :

Velocity of the channel

\(T_{w}\) :

Temperature at the channel wall

\(U_{w}\) :

Velocity at the channel wall

\(F\) :

Non-uniform inertia coefficient of porous medium

\(P\) :

Fluid pressure

\(k\) :

Permeability of porous medium

\(c_{b}\) :

Drag coefficient

\(T\) :

Fluid temperature and

\(q_{rad}\) :

The radiative heat flux

\(\sigma^{*}\) :

Stefan–Boltzmann constant

\(k^{*}_{nf}\) :

Mean absorption coefficient

\(\rho_{nf}\) :

Density of nanofluid

\(\mu_{nf}\) :

Dynamic viscosity of nanofluid

\(\left( {\rho c_{p} } \right)_{nf}\) :

Heat capacity of nanofluid

\(\rho_{f}\) :

Density of base fluid

\(\mu_{f}\) :

Dynamic viscosity of base fluid

\(\left( {\rho c_{p} } \right)_{f}\) :

Heat capacity of base fluid

\(\phi\) :

Solid volume fraction of nanofluid

References

  • Abbasi FM, Shanakhat I, Shehzad SA (2019) Entropy generation analysis for peristalsis of nanofluid with temperature dependent viscosity and Hall effects. J Magn Magn Mater 474:434–441

    Article  Google Scholar 

  • Abro KA, Gómez-Aguilar JF (2019) A comparison of heat and mass transfer on a Walter’s-B fluid via Caputo–Fabrizio versus Atangana–Baleanu fractional derivatives using the Fox-H function. Eur Phys J Plus 134:101. https://doi.org/10.1140/epjp/i2019-12507-4

    Article  Google Scholar 

  • Abro KA, Yıldırım A (2019) Fractional treatment of vibration equation through modern analogy of fractional differentiations using integral transforms. Iran J Sci Tech Trans A Sci. https://doi.org/10.1007/s40995-019-00687-4

    Article  MathSciNet  Google Scholar 

  • Abro KA, Memon AA, Uqaili MA (2018) A comparative mathematical analysis of RL and RC electrical circuits via Atangana–Baleanu and Caputo–Fabrizio fractional derivatives. Eur Phys J Plus 133:113. https://doi.org/10.1140/epjp/i2018-11953-8

    Article  Google Scholar 

  • Abro KA, Chandio AD, Abro IA, Khan I (2019) Dual thermal analysis of magnetohydrodynamic flow of nanofluids via modern approaches of Caputo–Fabrizio and Atangana–Baleanu fractional derivatives embedded in porous medium. J Thermal Anal Calorim. https://doi.org/10.1007/s10973-018-7302-z

    Article  Google Scholar 

  • Ahmed N, Shah NA, Ahmad B, Shah SIA, Ulhaq S, Rahimi-Gorji M (2018) Transient MHD convective flow of fractional nanofluid between vertical plates. J Appl Comput Mech. https://doi.org/10.22055/jacm.2018.26947.1364

    Article  Google Scholar 

  • Alarifi IM, Khan WS, Asmatulu R (2018) Synthesis of electrospun polyacrylonitrile- derived carbon fibers and comparison of properties with bulk form. PLoS One 13(8):e0201345

    Article  Google Scholar 

  • Alarifi IM, Abokhalil AG, Osman M, Lund LA, Ayed MB, Belmabrouk H, Tlili I (2019) MHD flow and heat transfer over vertical stretching sheet with heat sink or source effect. Symmetry 11(3):297

    Article  Google Scholar 

  • Asadullah M, Khan U, Manzoor R, Ahmed N, Mohyud-Din ST (2013) MHD flow of a Jeffery fluid in converging and diverging channels. Int J Modern Math Sci 6(2):92–106

    Google Scholar 

  • Forchheimer P (1901) Wasserbewegung durch boden. Z Ver D Ing 45:1782–1788

    Google Scholar 

  • Gireesha BJ, Kumar KG, Krishnamurthy MR, Rudraswamy NG (2018) Enhancement of heat transfer in an unsteady rotating flow for the aqueous suspensions of single wall nanotubes under nonlinear thermal radiation: a numerical study. Colloid Polym Sci 296(9):1501–1508

    Article  Google Scholar 

  • Hamel G (1917) Spiralförmige Bewegungen zäher Flüssigkeiten. Jahresbericht der deutschen mathematiker-vereinigung 25:34–60

    MATH  Google Scholar 

  • Hayat T, Ashraf MB, Alsulami HH, Alhuthali MS (2014) Three-Dimensional mixed convection flow of viscoelastic fluid with thermal radiation and convective conditions. PLoS One 9:e90038

    Article  Google Scholar 

  • Hayat T, Muhammad T, Al-Mezal S, Liao SJ (2016) Darcy–Forchheimer flow with variable thermal conductivity and Cattaneo–Christov heat flux. Int J Numer Methods Heat Fluid Flow 26:2355–2369

    Article  Google Scholar 

  • Hayat T, Haider F, Muhammad T, Alsaedi A (2017) Three-dimensional rotating flow of carbon nanotubes with Darcy–Forchheimer porous medium. PLoS One 12:e0179576

    Article  Google Scholar 

  • Hayat T, Bibi A, Yasmin H, Alsaadi FE (2018) Magnetic field and thermal radiation effects in peristaltic flow with heat and mass convection. J Thermal Sci Eng Appl 10(5):051018

    Article  Google Scholar 

  • Hussanan A, Khan I, Rahimi Gorji M, Khan WA (2019) CNTS-water–based nanofluid over a stretching sheet. BioNanoScience. https://doi.org/10.1007/s12668-018-0592-6

    Article  Google Scholar 

  • Jeffery GB (1915) The two-dimensional steady motion of a viscous fluid. Lond Edinb Dublin Philos Mag J Sci 29(172):455–465

    Article  Google Scholar 

  • Khan NS, Gul T, Islam S, Khan W (2017) Thermophoresis and thermal radiation with heat and mass transfer in a magnetohydrodynamic thin-film second-grade fluid of variable properties past a stretching sheet. Eur Phys J Plus 132:1–20

    Article  Google Scholar 

  • Kumar KG, Gireesha BJ, Gorla RSR (2018a) Flow and heat transfer of dusty hyperbolic tangent fluid over a stretching sheet in the presence of thermal radiation and magnetic field. Int J Mech Mater Eng 13(1):2

    Article  Google Scholar 

  • Kumar KG, Archana M, Gireesha BJ, Krishnamurthy MR (2018b) Cross diffusion effect on MHD mixed convection flow of nonlinear radiative heat and mass transfer of Casson fluid over a vertical plate. Results Phys 8:694–701

    Article  Google Scholar 

  • Makinde OD (2005) Free convection flow with thermal radiation and mass transfer past a moving vertical porous plate. Int Commun Heat Mass Transfer 32(10):1411–1419

    Article  Google Scholar 

  • Meraj MA, Shehzad SA, Hayat T, Abbasi FM, Alsaedi A (2017) Darcy–Forchheimer flow of variable conductivity Jeffrey liquid with Cattaneo–Christov heat flux theory. Appl Math Mech Engl Ed 38(4):557–566

    Article  MathSciNet  Google Scholar 

  • Motsa SS, Sibanda P, Marewo GT (2012) On a new analytical method for flow between two inclined walls. Numer Algorithms 61(3):499–514

    Article  MathSciNet  Google Scholar 

  • Muhammad T, Alsaedi A, Shehzad SA, Hayat T (2017a) A revised model for Darcy–Forchheimer flow of Maxwell nanofluid subject to convective boundary condition. Chin J Phys 55:963–976

    Article  Google Scholar 

  • Muhammad U, Haq RU, Hamid M, Wang W (2017b) Least square study of heat transfer of water based Cu and Ag nanoparticles along a converging/diverging channel. J Mol Liq. https://doi.org/10.1016/j.molliq.2017.11.047

    Article  Google Scholar 

  • Murali Krishna C, Viswanatha Reddy G, Basma Souayeh C, Raju SK, Rahimi-Gorji M, Suresh Kumar Raju S (2019) Thermal convection of MHD Blasius and Sakiadis flow with thermal convective conditions and variable properties. Microsyst Technol. https://doi.org/10.1007/s00542-019-04353-y

    Article  Google Scholar 

  • Muskat M (1946) The flow of homogeneous fluids through porous media. Edwards, Ann Arbor

    Google Scholar 

  • Pal D, Mondal H (2012) Hydromagnetic convective diffusion of species in Darcy–Forchheimer porous medium with non-uniform heat source/sink and variable viscosity. Int Commun Heat Mass Transfer 39:913–917

    Article  Google Scholar 

  • Rashidi MM, Vishnu Ganesh N, Abdul Hakeem AK, Ganga B (2014) Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation. J Mol Liq 198:234–238

    Article  Google Scholar 

  • Reddy MG (2014) Influence of magnetohydrodynamic and thermal radiation boundary layer flow of a nanofluid past a stretching sheet. J Sci Res 6(2):257–272

    Article  Google Scholar 

  • Reddy MG, Rani MS, Kumar KG, Prasannakumara BC (2018) Cattaneo-Christov heat flux and non-uniform heat-source/sink impacts on radiative Oldroyd-B two-phase flow across a cone/wedge. J Braz Soc Mech Sci Eng 40(2):95

    Article  Google Scholar 

  • Seddeek MA (2006) Influence of viscous dissipation and thermophoresis on Darcy–Forchheimer mixed convection in a fluid saturated porous media. J Colloid Interface Sci 293:137–142

    Article  Google Scholar 

  • Shehzad SA, Abbasi FM, Hayat T, Alsaedi A (2016) Cattaneo–Christov heat flux model for Darcy–Forchheimer flow of an Oldroyd-B fluid with variable conductivity and non-linear convection. J Mol Liq 224:274–278

    Article  Google Scholar 

  • Souayeh B, Ben-Cheikh N, Ben-Beya B (2016) Numerical simulation of three-dimensional natural convection in a cubic enclosure induced by an isothermally-heated circular cylinder at different inclinations. Int J Therm Sci 110:325–339

    Article  Google Scholar 

  • Souayeh B, Ben-Cheikh N, Ben-Beya B (2017) Effect of thermal conductivity ratio on flow features and convective heat transfer. Part Sci Technol 35(5):565–574

    Article  Google Scholar 

  • Souayeh B, Reddy MG, Poornima T, Rahimi- Gorji M, Alarifi IM (2019) Comparative analysis on non-linear radiative heat transfer on MHD Casson nanofluid past a thin needle. J Mol Liq 284:163–174

    Article  Google Scholar 

  • Sureshkumar Raju S, Ganesh Kumar K, Rahimi-Gorji M, Khan I (2019) Darcy-Forchheimer flow and heat transfer augmentation of a viscoelastic fluid over an incessant moving needle in the presence of viscous dissipation. Microsyst Technol. https://doi.org/10.1007/s00542-019-04401-7

    Article  Google Scholar 

  • Syed TMD, Khan U, Ahmed N, Mohsin BB (2017) Heat and mass transfer analysis for MHD flow of nanofluid in convergent/divergent channels with stretchable walls using Buongiorno’s model. Neural Comput Appl 28:4079–4092

    Article  Google Scholar 

  • Yasmin H, Awais M, Bukhari U, Ali A (2017) Convective and peristaltic viscous fluid flow with variable viscosity. J Eng Thermophys 26(1):69–78

    Article  Google Scholar 

  • Zeeshan A, Majeed A, Ellahi R (2016) Effect of magnetic dipole on viscous Ferro-fluid past a stretching surface with thermal radiation. J Mol Liq 215:549–554

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at Majmaah University for funding this work under Project Number RGP-2019-16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim M. Alarifi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K.G., Rahimi-Gorji, M., Reddy, M.G. et al. Enhancement of heat transfer in a convergent/divergent channel by using carbon nanotubes in the presence of a Darcy–Forchheimer medium. Microsyst Technol 26, 323–332 (2020). https://doi.org/10.1007/s00542-019-04489-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-019-04489-x

Navigation