Skip to main content
Log in

Two-Phase Particulate Suspension Flow in Convergent and Divergent Channels: A Numerical Model

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The problem dealing with the two-phase flow of particulate suspension in a converging diverging channel has been analyzed. The basic equations governing the flow are reduced to a set of ordinary differential equations by using the appropriate transformations for the velocity components. The numerical solutions are carried out using numerical technique and the results are presented graphically. The flow phenomena have been analyzed for different physical parameters, Reynolds number, cross flow Reynolds number, angle of the channel, ratios of densities fluid and particle phases and momentum inverse stokes number. The effects of parameters on the velocity of the fluid and the skin friction has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

Re :

Reynolds number

R:

Cross flow Reynolds number

\(r,\theta \) :

Polar coordinates

\(\alpha \) :

Angle of the channel

\(\upsilon \) :

Kinematic viscosity

\(\mu \) :

Coefficient of viscosity

\(\rho \) :

Density of the fluid

u :

Fluid phase velocity

\(u_p \) :

Particle phase velocity

L :

Ratio of the densities of the particle and fluid phase

\(\beta \) :

Momentum inverse stokes number

S:

Drag coefficient of the interaction for the force exerted by one face on the other

References

  1. Jeffery, G.B.: The two dimensional steady motion of a viscous fluid. Philos. Mag. 6, 455–465 (1915)

    Article  MATH  Google Scholar 

  2. Hamel, G.: SpiralformigeBewgungenZaherFlussigkeiten. Jahresbericht der DeutschenMath.Vereinigung 25, 34–60 (1916)

    Google Scholar 

  3. Terril, R.M.: Slow laminar flow in a converging or diverging channel with suction at one wall and blowing at the other wall. ZAMP 16, 306 (1965)

    Article  MATH  Google Scholar 

  4. Balmer, R.T., Kauzlarich, J.: Similarity solutionsfor converging or diverging steady flowof non-Newtonian elastic power law fluids withwall suction or injection. AICHE J. 17, 1181–1188 (1971)

    Article  MATH  Google Scholar 

  5. Sinha Roy, J., Nayak, P.: Steady two dimensional incompressible laminar visco-elastic flow in a converging and diverging channel. Acta Mech. 43, 129–136 (1982)

    Article  MATH  Google Scholar 

  6. Shadloo, M.S., Kimiaeifar, A.: Application of homotopy perturbation method to find an analytical solution for magnetohydrodynamic flows of viscoelastic fluids in converging/ diverging channels. In: Proceedings of the Institute of Mechanical Engineers Part C Journal of Mechanical Engineering Science 1989–1996 (vol 203-210). 2010, pp. 347–353

  7. Umavathi, J.C., Shekar, M.: Effect of MHD on Jeffery–Hamel flow in nanofluids by differential transform method. Int. J. Eng. Res. Appl. 3(5), 953–962 (2013)

    Google Scholar 

  8. Mustafa, T.: Extending the traditional Jeffery-Hamel flow to stretchable convergent/divergent channels. Comput. Fluids 100, 196–203 (2014)

    Article  MathSciNet  Google Scholar 

  9. Freidoonimehr, N., Rashidi, M.M.: Dual solutions for MHD Jeffery-Hamel nano-fluid flow in non-parallel walls using predictor homotopy analysis method. J. Appl. Fluid Mech. 8(4), 911–919 (2015)

    Article  Google Scholar 

  10. Srinivasacharya, D., Mallikarjuna, B., Bhuvanavijaya, R.: Radiation effect on mixed convection over a vertical wavy surface in darcy porous medium with variable properties. J. Appl. Sci. Eng. 18(3), 265–274 (2015)

    Google Scholar 

  11. Mallikarjuna, B., Rashad, A.M., Hussein, A.K., Hariprasad Raju, S.: Transpiration and thermophoresis effects on non-Darcy convective flow over a rotating cone with thermal radiation. Arab. J. Sci. Eng. 41, 4691–4700 (2016)

    Article  MathSciNet  Google Scholar 

  12. Mohyud-Din, S.T., Khan, U., Ahmed, N., Mohsin, B.B.: Heat and mass transfer analysis for MHD flow of nanofluid in convergent/divergent channels with stretchable walls using Buongiorno’s model. Neural Comput. Appl. (2017) (in press)

  13. Chamkha, A.J.: Hydromagnetic two-phase flow in a channel. Int. J. Eng. Sci. 33, 437–446 (1995)

    Article  MATH  Google Scholar 

  14. Al-Subaie, M.A., Chamkha, A.J.: Analytical solutions for hydromagnetic natural convection flow of a particulate suspension through a channel with heat generation or absorption effects. Heat Mass Transf. 39, 701–707 (2003)

    Article  Google Scholar 

  15. Usha, R., Senthilkumar, S., Tulapurkara, E.G.: Numerical study of particulate suspension flow through wavy-walled channels. Int. J. Numer. Methods Fluid 51, 235–259 (2006)

    Article  MATH  Google Scholar 

  16. Chamkha, A.J., Al-Rashidi, S.S.: Analytical solutions for hydromagnetic natural convection flow of a particulate suspension through isoflux-isothermal channels in the presence of a heat source or sink. Energy Convers. Manag. 51, 851–858 (2010)

    Article  Google Scholar 

  17. Rawat, S., Bhargava, R., Kapoor, S., Beg, O.A., Beg, T.A., Bansal, R.: Numerical modelling of two-phase hydromagnetic flow and heat transfer in a particle-suspension through a non-Darcian porous channel. J. Appl. Fluid Mech. 7(2), 249–261 (2014)

    Google Scholar 

  18. Mallikarjuna, B., Chamkha, A.J., Bhuvanavijaya, R.: Soret and Dufour effects on Double diffusive convective flow through a non-Darcy porous medium in a cylinder annulur region in the presence of heat sources. J. Porous Media 17(7), 623–636 (2014)

    Article  Google Scholar 

  19. Krupa Lakshmi, K.L., Gireesha, B.J., Gorla, R.S.R., Mahanthesh, B.: Effects of diffusion- thermo and thermo-diffusion on two-phase boundary layer flow past a stretching sheet with fluid particle suspension and chemical reaction: A numerical study. J. Niger. Math. Soc. 35(1), 66–81 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  20. Yao, J., Tao, K., Huang, Z.: Flow of particulate-fluid suspension in a channel with porous walls. Transp. Porous Med. 98, 147–172 (2013)

    Article  MathSciNet  Google Scholar 

  21. Kamel, M.H., Eldesoky, I.M., Malur, P.M., Abumandown, R.M.: Slip effects on peristaltic transport of a particle-fluid suspension in a planar channel. Appl. Bion. Biomech. 2015, 703574 (2015). doi:10.1155/2015/703574

    Google Scholar 

  22. Eldesoky, I.M., Abdelsalam, S.I., Abumandown, M.H., Vafai, K.: Interaction between compressibility and particulate suspension on peristaltically driven flow in planar channel. Appl. Math. Mech. 38(1), 137–154 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mallikarjuna, B., Rashad, A.M., Chamkha, A.J., Hariprasad Raju, S.: Chemical reaction effects on mhd convective heat and mass transfer flow past a rotating vertical cone embedded in a variable porosity regime. Afrika Matematika 27(3), 646–665 (2016)

    MathSciNet  Google Scholar 

  24. Srinivasacharya, D., Mallikarjuna, B., Bhuvanavijaya, R.: Effects of thermophoresis and variable properties on mixed convection along a vertical wavy surface in a fluid saturated porous medium. Alex. Eng. J. 55, 1243–1253 (2016)

    Article  Google Scholar 

  25. Ylimaz, O., Adil, A., Erol, S.: Slow flow of the Reiner-Rivlin fluid in a converging or diverging channel with suction or injection. Turk. J. Eng. Environ. Sci. 22, 179–183 (1998)

    Google Scholar 

Download references

Acknowledgements

One of the author Mallikarjuna thanks to BMS College of Engineering, Bangalore-19 for giving financial assistance and support through the TECHNICAL EDUCATION QUALITY IMPROVEMENT PROGRAMME [TEQIP-II] of the MHRD, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Mallikarjuna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramprasad, S., Subba Bhatta, S.H.C.V., Mallikarjuna, B. et al. Two-Phase Particulate Suspension Flow in Convergent and Divergent Channels: A Numerical Model. Int. J. Appl. Comput. Math 3 (Suppl 1), 843–858 (2017). https://doi.org/10.1007/s40819-017-0386-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-017-0386-5

Keywords

Navigation