Skip to main content

Advertisement

Log in

Reshaping of breathing pulses to action potential profile propagating in an electromechanical coupled model for biomembranes and nerves

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The problem of understanding the neurons function and thereby the brain has been the nexus of research during the last decades, in the fields of medicine and physical neuroscience. In the existing experimental studies, it is shown that the nerve impulse is an electromechanical signal which forces the membrane through the transition while propagating. In this work, we study localized nonlinear excitations in an electromechanical coupled model for biomembranes and nerves. We thus report on the presence of envelope solitons of the nerve impulse in this electromechanical coupled model. More importantly, we reshaped the obtained envelope solitons (breathing pulses) to action potential profile from direct numerical simulation of the coupled model. The numerical results shows a clear concordance with the analytical predictions. The theoretical results obtained in this work shows that the nerve impulse propagating through the proposed model is an electromechanical impulse that propagates along the nerve using spatial and temporal dimensions in the form of localized propagating nonlinear waves as predicted by experimental studies existing in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Available on citation.

References

  1. P. Raven, G. Johnson, Biology (The McGraw Hill Companies, Dubuque, 2002)

    Google Scholar 

  2. I. Tasaki, Physiology and Electrochemistry of Nerve Fibers (Elsevier, Amsterdam, 1982)

    Google Scholar 

  3. G. Fongang Achu, S.E. Mkam Tchouobiap, F.M. Moukam Kakmeni, C. Tchawoua, Periodic soliton trains and informational code structures in an improved soliton model for biomembranes and nerves. Phys. Rev. E 98, 022216 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  4. J. Engelbrecht, T. Peets, K. Tamm, M. Laasmaa, M. Vendelin, On the complexity of signal propagation in nerve fibres. Proc. Est. Acad. Sci. 67, 28 (2018)

    Article  MathSciNet  Google Scholar 

  5. P. Grabitz, V.P. Ivanova, T. Heimburg, Relaxation kinetics of lipid membranes and its relation to the heat capacity. Biophys. J. 82, 299–309 (2002)

    Article  Google Scholar 

  6. M.M. Rvachev, On axoplasmic pressure waves and their possible role in nerve impulse propagation. Biophys. Rev. Lett. 5, 73 (2010)

    Article  Google Scholar 

  7. A.M. Dikandé, G.A. Bartholomew, Localized short impulses in a nerve model with self-excitable membrane. Phys. Rev. E 80, 1 (2009)

    Article  Google Scholar 

  8. T. Heimburg, A.D. Jackson, On the action potential as a propagating density pulse and the role of anesthetics. Biophys. Rev. Lett. 2, 57 (2007)

    Article  Google Scholar 

  9. G. Fongang Achu, F.M. Moukam Kakmeni, A.M. Dikandé, Breathing pulses in the damped-soliton model for nerves. Phys. Rev. E 97, 012211 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  10. R. Appali, U. Van Rienen, T. Heimburg, A comparison of the Hodgkin–Huxley model and the soliton. Theory for the action potential in nerves, in Advances Planar Lipid Bilayers Liposomes, vol. 16. (Academic Press, Cambridge, 2012), pp.275–299

  11. T. Heimburg, A.D. Jackson, On soliton propagation in biomembranes and nerves. Proc. Natl. Acad. Sci. 102, 9790 (2005)

    Article  ADS  Google Scholar 

  12. A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500 (1952)

    Article  Google Scholar 

  13. J. Nagumo, S. Arimoto, S. Yoshizawa, An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061 (1962)

    Article  Google Scholar 

  14. J.L. Hindmarsh, R.M. Rose, A model of the nerve impulse using two first-order differential equations. Nature 296, 162 (1982)

    Article  ADS  Google Scholar 

  15. C. Morris, H. Lecar, Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, 193 (1981)

    Article  ADS  Google Scholar 

  16. I. Tasaki, K. Iwasa, R.C. Gibbons, Mechanical changes in crab nerve fibers during action potentials. Jpn. J. Physiol. 30, 897 (1980)

    Article  Google Scholar 

  17. I. Tasaki, K. Kusano, P.M. Byrne, Rapid mechanical and thermal changes in the garfish olfactory nerve associated with a propagated impulse. Biophys. J. 55, 1033 (1989)

    Article  ADS  Google Scholar 

  18. I. Tasaki, P.M. Byrne, Volume expansion of nonmyelinated nerve fibers during impulse conduction. Biophys. J. 57, 633 (1990)

    Article  ADS  Google Scholar 

  19. K. Iwasa, I. Tasaki, Mechanical changes in squid giant axons associated with production of action potentials. Biochem. Biophys. Res. Commun. 95, 1328 (1980)

    Article  Google Scholar 

  20. A. El Hady, B.B. Machta, Mechanical surface waves accompany action potential propagation. Nat. Commun. 6, 6697 (2015)

    Article  ADS  Google Scholar 

  21. J. Engelbrecht, K. Tamm, T. Peets, Modeling of complex signals in nerve fibers. Med. Hypotheses 120, 90 (2018)

    Article  Google Scholar 

  22. J. Engelbrecht, K. Tamm, T. Peets, Electromechanical coupling of waves in nerve fibres. Biomech. Model. Mechanobiol. 17, 1771 (2018)

    Article  Google Scholar 

  23. T. Heimburg, A. Blicher, L.D. Mosgaard, K. Zecchi, Electromechanical properties of biomembranes and nerves. J. Phys. Conf. Ser. 558, 012018 (2014)

    Article  Google Scholar 

  24. T. Peets, K. Tamm, On mechanical aspects of nerve pulse propagation and the Boussinesq paradigm. Proc. Estonian Acad. Sci. 64, 331 (2015)

    Article  Google Scholar 

  25. J. Engelbrecht, K. Tamm, T. Peets, On mathematical modelling of solitary pulses in cylindrical biomembranes. Biomech. Model. Mechanobiol. 14, 159 (2015)

    Article  Google Scholar 

  26. T. Heimburg, The capacitance and electromechanical coupling of lipid membranes close to transitions: the effect of electrostriction. Biophys. J. 103, 918 (2012)

    Article  ADS  Google Scholar 

  27. J. Tian, G. Huang, M. Lin, J. Qiu, B. Sha, T.J. Lu, F. Xu, A mechanoelectrical coupling model of neurons under stretching. J. Mech. Behav. Biomed. Mater. 93, 213 (2019)

    Article  Google Scholar 

  28. A.S.F. Kamga, G.F. Achu, F.M.M. Kakmeni, P.G. Ghomsi, F.T. Ndjomatchoua, C. Tchawoua, Continuous signaling pathways instability in an electromechanical coupled model for biomembranes and nerves. Eur. Phys. J. B 95, 12 (2022)

    Article  ADS  Google Scholar 

  29. G.F. Achu, F.M.M. Kakmeni, Neuromechanical modulation of transmembrane voltage in a model of a nerve. Phys. Rev. E 105, 014407 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  30. F.M. Moukam Kakmeni, E.M. Inack, E.M. Yamakou, Localized nonlinear excitations in diffusive Hindmarsh–Rose neural networks. Phys. Rev. E 89, 052919 (2014)

    Article  ADS  Google Scholar 

  31. C.S. Drapaca, An electromechanical model of neuronal dynamics using Hamilton’s principle. Front. Cell. Neurosci. 9, 1 (2015)

    Google Scholar 

  32. D. Debanne, E. Campanac, A. Bialowas, E. Carlier, G. Alcaraz, Axon physiology. Physiol. Rev. 91, 555 (2011)

    Article  Google Scholar 

  33. H. Chen, D. Garcia-Gonzalez, A. Jérusalem, Computational model of the mechanoelectrophysiological coupling in axons with application to neuromodulation. Phys. Rev. E 99, 1 (2019)

    Article  Google Scholar 

  34. I. Cinelli, M. Destrade, M. Duffy, P. McHugh, Electro-mechanical response of a 3D nerve bundle model to mechanical loads leading to axonal injury. Int. J. Numer. Methods Biomed. Eng. 34, e2942 (2018)

    Article  MathSciNet  Google Scholar 

  35. A. Gonzalez-Perez, L.D. Mosgaard, R. Budvytyte, E. Villagran-Vargas, A.D. Jackson, T. Heimburg, Solitary electromechanical pulses in lobster neurons. Biophys. Chem. 216, 51 (2016)

    Article  Google Scholar 

  36. A. Jérusalem, Garca-Grajales JA. Merchan-Perez, J.M. Pena, A computational model coupling mechanics and electrophysiology in spinal cord injury. Biomech. Model Mechanobiol. 13, 883896 (2014)

    Article  Google Scholar 

  37. L. Holland, H.W. de Regt, B. Drukarch, Thinking about the nerve impulse: the prospects for the development of a comprehensive account of nerve impulse propagation. Front. Cell. Neurosci. 13, 1 (2019)

    Article  Google Scholar 

  38. I. Tasaki, Collision of two nerve impulses in the nerve fibre. Biochim. Biophys. Acta Biomembr. 3, 494 (1949)

    Article  Google Scholar 

  39. A. Gonzalez-Perez, R. Budvytyte, L.D. Mosgaard, S. Nissen, T. Heimburg, Penetration of action potentials during collision in the median and lateral giant axons of invertebrates. Phys. Rev. X 4, 031047 (2014)

    Google Scholar 

  40. J. Engelbrecht, T. Peets, K. Tamm, Electromechanical coupling of waves in nerve fibres. Biomech. Model. Mechanobiol. 17, 1771 (2018)

    Article  Google Scholar 

  41. B.A. Malomed, Solitary pulses in linearly coupled Ginzburg–Landau equations. Chaos Interdiscip. J. Nonlinear Sci. 17, 037117 (2007)

    Article  MathSciNet  Google Scholar 

  42. T. Heimburg, Mechanical aspects of membrane thermodynamics. Estimation of the mechanical properties of lipid membranes close to the chain melting transition from calorimetry. Biochim. Biophys. Acta Biomembr. 1415, 147 (1998)

    Article  Google Scholar 

  43. K. Tamm, J. Engelbrecht, T. Peets, Temperature changes accompanying signal propagation in axons. J. Non-Equilibrium Thermodyn. 44, 277 (2019)

    Article  ADS  Google Scholar 

  44. J. Engelbrecht, K. Tamm, T. Peets, On solutions of a Boussinesq-type equation with displacement-dependent nonlinearities: the case of biomembranes. Philos. Mag. 97, 967 (2017)

    Article  ADS  Google Scholar 

  45. A. Blicher, T. Heimburg, Voltage-gated lipid ion channels. PLoS ONE 8, e65707 (2013)

    Article  ADS  Google Scholar 

  46. A. Mondal, S.K. Sharma, R.K. Upadhyay, M.A. AzizAlaoui, P. Kundu, C. Hens, Diffusion dynamics of a conductance-based neuronal population. Phys. Rev. E 99, 042307 (2019)

    Article  ADS  Google Scholar 

  47. I.B. Tagne nkounga, F.M. Moukam Kakmeni, R. Yamapi, Birhythmic oscillations and global stability analysis of a conductance-based neuronal model under ion channel fluctuations. Chaos Solitons Fract. 159, 112126 (2022)

    Article  MathSciNet  Google Scholar 

  48. Q. Xu, L. Huang, N. Wang, H. Bao, H. Wu, Mo Chen, Initial-offset-boosted coexisting hyperchaos in a 2D memristive Chialvo neuron map and its application in image encryption. Nonlinear Dyn., 1–17 (2023)

  49. Q. Xu, X. Chen, X. Yu, W. Fan, Z. Li, N. Wang, Neuromorphic behaviors of a symmetric LAM-based electronic neuron circuit: numerical simulation and experimental measurement. Int. J. Electron. Commun. 162, 154594 (2023)

    Article  Google Scholar 

  50. M. Remoissenet, Waves Called Solitons Concepts and Experiments (Springer, Berlin, 1999)

    Book  Google Scholar 

  51. T. Dauxois, M. Peyrard, Physics of Solitons (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  52. A. Kamdoum Kuitche, A.B. Togueu Motcheyo, T. Kanaa, C. Tchawoua, Modulational instability in transversely connected nonlinear pendulum pairs. Eur. Phys. J. Plus 123, 1–10 (2023)

    Google Scholar 

  53. E. Tala-Tebue, G. Roger Deffo, S.B. Yamgoue, A. Kenfack-Jiotsa, F.B. Pelap, Monoatomic chain: modulational instability and exact traveling wave solutions. Eur. Phys. J. Plus 135, 715 (2020)

    Article  Google Scholar 

  54. R.Y. Ondoua, J.C. Mimshe Fewu, D. Belobo Belobo, C.B. Tabi, H.P. Ekobena Fouda, Excitons dynamic in a three-stranded a-helix protein chains with diagonal and off-diagonal couplings: effects of strong long-range interactions. Eur. Phys. J. Plus 136, 274 (2021)

    Article  Google Scholar 

  55. N.O. Nfor, P.G. Ghomsi, F.M. Moukam Kakmeni, Dynamics of coupled mode solitons in bursting neural networks. Phys. Rev. E 97, 1 (2018)

    Article  MathSciNet  Google Scholar 

  56. T. Heimburg, The thermodynamic soliton theory of the nervous impulse and possible medical implications. Prog. Biophys. Mol. Biol. 173, 24–35 (2022)

    Article  Google Scholar 

  57. J.S. Andrew, W. Winlow, The soliton and the action potential-primary elements underlying sentience. Front. Physiol. 9, 779 (2018)

    Article  Google Scholar 

  58. E. Quak, T. Soomere, Applied Wave Mathematics: Selected Topics in Solids, Fluids, and Mathematical Methods (Springer, Berlin, 2009)

    Book  Google Scholar 

  59. H. Barz, A. Schreiber, U. Barz, Impulses and pressure waves cause excitement and conduction in the nervous system. Med. Hypotheses 81, 768–772 (2013)

    Article  Google Scholar 

  60. H. Barz, U. Barz, Pressure waves in neurons and their relationship to tangled neurons and plaques. Med. Hypotheses 82, 563–566 (2014)

    Article  Google Scholar 

  61. C.N. Takembo, A. Mvogo, H.P.E. Fouda, T.C. Kofané, Localized modulated wave solution of diffusive FitzHugh–Nagumo cardiac networks under magnetic flow effect. Nonlinear Dyn. 95, 1079 (2019)

    Article  Google Scholar 

  62. S.H. White, T.E. Thompson, Capacitance, area, and thickness variations in thin lipid films. Biochim. Biophys. Acta Biomembr. 323, 7 (1973)

    Article  Google Scholar 

  63. M. Peyrard, T. Dauxois, Physique Des Solitons (CNRS EDITION, Paris, 2004)

    Book  Google Scholar 

  64. P. Guemkam Ghomsi, J.T. Tameh Berinyoh, F.M. Moukam Kakmeni, Ionic wave propagation and collision in an excitable circuit model of microtubules. Chaos Interdiscip. J. Nonlinear Sci. 28, 023106 (2018)

    Article  MathSciNet  Google Scholar 

  65. A. Mvogo, A. Tambue, G.H. Ben-Bolie, T.C. Kofané, Localized numerical impulse solutions in diffuse neural networks modeled by the complex fractional Ginzburg–Landau equation. Commun. Nonlinear Sci. Numer. Simul. 39, 396 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  66. A. Karthikeyan, I. Moroz, K. Rajagopal, P. Duraisamy, Effect of temperature sensitive ion channels on the single and multilayer network behavior of an excitable media with electromagnetic induction. Chaos Solitons Fract. 150, 111144 (2021)

    Article  MathSciNet  Google Scholar 

  67. E. Villagran, A. Ludu, R. Hustert, P. Gumrich, A.D. Jackson, T. Heimburg, Periodic solutions and refractory periods in the soliton theory for nerves and the locust femoral nerve. Biophys. Chem. 153, 159 (2011)

    Article  Google Scholar 

  68. I.B.T. Nkounga, F.M. Moukam Kakmeni, B.I.C.R. Yamapi, Controlling switching between birhythmic states in a new conductance-based bursting neuronal model. Nonlinear Dyn. (2021)

Download references

Author information

Authors and Affiliations

Authors

Contributions

ASFK did formal analysis, investigation, writing and editing; GFA and FMMK did concept development, supervision, writing, review and editing; CT did review and editing.

Corresponding author

Correspondence to A. S. Foualeng Kamga.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Appendices

Appendix A

The following are expressions of parameters used in Eq. (3):

$$\begin{aligned} {a_1}&= \dfrac{{\sqrt{{H_1}} \left( {V_1^3{g_{Ca}} - 3V_1^2{V_{Ca}}{g_{Ca}} + 3{V_1}V_2^2{g_{Ca}} - 6V_2^3{g_L} - 3V_2^3{g_{Ca}} + 3V_2^2{V_{Ca}}{g_{Ca}}} \right) }}{{6{C_m}c_0^2V_2^3}},\,\, \nonumber \\ {a_2}&= \dfrac{{\sqrt{{H_1}} {g_K}{\omega _0}{V_K}}}{{{C_m}c_0^2{V_0}}},\,\, \nonumber \\ {a_3}&= \dfrac{{\sqrt{{H_1}} {g_{Ca}}{V_0}\left( {V_1^2 + {V_1}{V_{Ca}} - 2V_2^2} \right) }}{{4{C_m}c_0^2V_2^3}},\,\,\nonumber \\ {a_4}&= -\dfrac{{\sqrt{{H_1}} {g_K}{\omega _0}}}{{{C_m}c_0^2}},\,\,{a_5} = -\dfrac{{\sqrt{{H_1}} {g_{Ca}}V_0^2\left( {{V_{Ca}} + 3{V_1}} \right) }}{{6{C_m}c_0^2V_2^3}},\nonumber \\ {a_6}&= \dfrac{{\sqrt{{H_1}} \left( {V_1^3{V_{Ca}}{g_{Ca}} -3{V_1}V_2^2{V_{Ca}}{g_{Ca}} + 6V_2^3{V_L}{g_L} +3V_2^3{V_{Ca}}{g_{Ca}} + 6{{\textrm{i}}_{ext}}V_2^3} \right) }}{{6{C_m}c_0^2V_2^3{V_0}}},\nonumber \\ {b_1}&= -\dfrac{{\sqrt{{H_1}} {V_0}\left( {5V_3^4 + 15V_3^2V_4^2 +6{V_3}V_4^3 - 24V_4^4} \right) }}{{144c_0^2{V_4}^5{\omega _0}}},\,\,{b_2} = -\dfrac{{\sqrt{{H_1}} \left( {V_3^2 + 8V_4^2} \right) }}{{24c_0^2{V_4}^2}},\nonumber \\ {b_3}&= \dfrac{{\sqrt{{H_1}} {V_0}^2\left( {10{V_3}^3 +15{V_3}{V_4}^2 + 3{V_4}^3} \right) }}{{144c_0^2{V_4}^5{\omega _0}}},\,\, \nonumber \\ {b_4}&= - \dfrac{{\sqrt{{H_1}} {V_0}{V_3}}}{{42c_0^2{V_4}^2}},\nonumber \\ {b_5}&= -\dfrac{{5\sqrt{{H_1}} {V_0}^3\left( {2{V_3}^2 + {V_4}^2} \right) }}{{48c_0^2{V_4}^5{\omega _0}}},\nonumber \\ {b_6}&= \dfrac{{\sqrt{{H_1}} {V_0}^2}}{{24c_0^2{V_4}^2}},\,\,{b_7} = \dfrac{{\sqrt{{H_1}} \left( {{V_3}^5 + 5{V_3}^3{V_4}^2 +3{V_3}^2{V_4}^3 - 24{V_3}{V_4}^4 + 24{V_4}^5} \right) }}{{144c_0^2{V_4}^5{\omega _0}}},\nonumber \\ q&= \dfrac{{{{\left( {\rho _0^A} \right) }^2} \beta }}{{c_0^2}}, \nonumber \\ p&= \dfrac{{\rho _0^A\alpha }}{{c_0^2}}, \nonumber \\ \mu&= \dfrac{\upsilon }{{\sqrt{{H_1}} }}, \nonumber \\ {\lambda _1}&= \dfrac{{{H_2}}}{{{H_1}}}c_0^2, \nonumber \\ \sigma&= \dfrac{{{C_m}V_0^2{H_1}}}{{2{\tau _2} {{\left( {\rho _0^A} \right) }^2}c_0^4}} \end{aligned}$$
(33)
$$\begin{aligned} {\sigma _1}&= \dfrac{{\sqrt{{H_1}} }}{{{\tau _1}c_0^2}}, \nonumber \\ {\eta _0}&= a_2^2{b_7} - {a_2}{a_6}{b_2} + {a_2}{b_2}{\sigma _1}, \nonumber \\ {\eta _1}&= a_2^2{b_1} - {a_1}{a_2}{b_2} + 2{a_2}{a_4}{b_7} - {a_2}{a_6}{b_4} - {a_4}{a_6}{b_2} + \left( {{a_2}{b_2} + {a_2}{b_4} + {a_4}{b_2}} \right) {\sigma _1}, \nonumber \\ {\eta _2}&= \left( {{a_2}{b_3} - {a_1}{b_4} - {a_3}{b_2} + 2{a_4}{b_1} - {a_6}{b_6}} \right) {a_2} + \left( {{a_4}{b_7} - {a_6}{b_4} - {a_1}{b_2}} \right) {a_4} + \left( {{a_2}{b_4} + {a_2}{b_6} + {a_4}{b_2} + {a_4}{b_4}} \right) {\sigma _1},\nonumber \\ {\eta _3}&= \left( {{a_2}{b_5} - {a_3}{b_4} + 2{a_4}{b_3} - {a_5}{b_2} - {a_1}{b_6}} \right) {a_2} + \left( {{a_4}{b_1} - {a_3}{b_2} - {a_6}{b_6} + {b_6} - {a_1}{b_4}} \right) {a_4} + \left( {{a_4}{b_4} + {a_4}{b_6} + {a_2}{b_6}} \right) {\sigma _1},\nonumber \\ {\kappa _0}&= - {a_2}{b_2}{\sigma _1},\,\,{\kappa _1} = - {\sigma _1}\left( {{a_2}{b_2} + {a_2}{b_4} + {a_4}{b_2}} \right) ,\,\,{\kappa _2} = - {\sigma _1}\left( {{a_2}{b_4} + {a_2}{b_6} + {a_4}{b_2} + {a_4}{b_4}} \right) , \nonumber \\ {\beta _0}&= {C_m}{a_2}{b_2} + {a_1}{a_2} - {a_2}{\sigma _1} - {a_4}{a_6} + {a_4}{\sigma _1},\,\,{\beta _1} = {C_m}\left( {{a_2}{b_4} + {a_4}{b_2}} \right) + 2{a_2}{a_3}, \nonumber \\ {\beta _2}&= {C_m}\left( {{a_2}{b_6} + {a_4}{b_4}} \right) + 3{a_2}{a_5} + {a_3}{a_4},\,\,{\beta _4} = {\sigma _1}\left( {{a_2} -{a_4}} \right) , \nonumber \\ {\gamma _0}&= - D{a_2}{b_2},\,\,{\gamma _1} = - D \left( {{a_2}{b_4} + {a_4}{b_2}} \right) ,\,\,{\gamma _2} =- D\left( {{a_2}{b_6} + {a_4}{b_4}} \right) , \nonumber \\ {\delta _1}&= {C_m}{a_4}, \nonumber \\ {\delta _2}&= {C_m}{a_2}, \nonumber \\ {\delta _3}&= - D{a_4}, \nonumber \\ {\delta _4}&= D{a_2}, \nonumber \\ {\delta _5}&= {\sigma _1}\left( {{a_2} + {a_4}} \right) , \nonumber \\ {\delta _6}&= {\sigma _1}{a_4},\,\,{\delta _7} = {a_2}{\sigma _1}. \end{aligned}$$
(34)

Appendix B

$$\begin{aligned} {P_1}&= \dfrac{{v_g^2{\delta _2} - {\gamma _0}}}{{{\delta _2} \omega }},\nonumber \\ {P_2}&= \dfrac{{{c_g}^2({k^2}{\lambda _1} + 1) + 4k \omega {\lambda _1}{c_g} - 6{k^2} + {\omega ^2}{\lambda _1} - 1}}{{\left( {{k^2}{\lambda _1} + 1} \right) \omega }}, \nonumber \\ {Q_{{1_r}}}&= \dfrac{{ - {k^4}{\gamma _1}^2 + {k^2} \left( {9{\delta _3}{\omega ^2}{\beta _1} + 9{\delta _1} {\omega ^2}{\gamma _1} - 9{\gamma _2}{\eta _1} + 11{\eta _2}{\gamma _1}} \right) + 9{\eta _3}{\eta _1} - 12{\delta _1}^2{\omega ^4} - {\omega ^2}{\beta _1}^2 - 10{\eta _2}^2 + 21{\delta _1}{\omega ^2}{\eta _2}}}{{6{\eta _1}{\delta _2}\omega }},\nonumber \\ {Q_{{1_i}}}&= - \dfrac{{{k^4}{\delta _3}{\gamma _1} + 4{\omega ^2}{k^2}{\delta _1}{\delta _3} - {k^2}{\delta _3}{\eta _2} - {\omega ^2}{\beta _1}{\delta _1} - {\beta _1}{\eta _2} + {\beta _2}{\eta _1}}}{{2{\eta _1}{\delta _2}}},\nonumber \\ {Q_1}&= {Q_{{1_r}}} + i{Q_{{1_i}}}, \nonumber \\ {R_1}&= \dfrac{{{k^2}{\delta _4} - {\beta _0}}}{{2{\delta _2}\omega }}, \nonumber \\ {K_{{1_r}}}&= \dfrac{1}{2}\dfrac{{{\kappa _0}}}{{{\delta _2}\omega }}, \nonumber \\ {Q_2}&= \dfrac{{{p^2}\left( {{k^2}{\lambda _1} + 1} \right) - 6q {k^2}\left( {1 - \lambda _1} \right) }}{{12\left( {1 - \lambda _1} \right) \left( {{k^2}\lambda _1 + 1} \right) \omega }}, \nonumber \\ {R_2}&= \dfrac{{\mu {k^2}}}{{2({k^2}\lambda _1 + 1)}}, \nonumber \\ {K_2}&= \dfrac{{{\sigma }}}{{2\left( {{k^2}\lambda _1 + 1} \right) \omega }}, \nonumber \\ {K_{{1_i}}}&= - \frac{{{\delta _7}}}{{2{\delta _2}}}, \nonumber \\ {K_1}&= {K_{{1_i}}} + i{K_{{1_i}}}, \nonumber \\ {M_1}&= - \dfrac{{{\omega ^2}{\beta _4}^2 - {\omega ^2}{\beta _4}{\delta _5} + {\omega ^2}{\delta _5}^2 + {\kappa _1}^2}}{{3{\eta _1}{\delta _2}\omega }}, \nonumber \\ {N_{{1_r}}}&= \dfrac{{6{k^2}{\omega ^2}{\beta _4}{\delta _3} + 3{k^2}{\omega ^2}{\delta _3}{\delta _5} + 2{k^2}{\gamma _1}{\kappa _1} - 2{\omega ^2}{\beta _1}{\beta _4} + {\omega ^2}{\beta _1}{\delta _5} - 3{\omega ^2}{\delta _1}{\kappa _1} + 3{\eta _1}{\kappa _2} - 5{\eta _2}{\kappa _1}}}{{3{\eta _1}{\delta _2}\omega }}, \nonumber \\ {N_{{1_i}}}&= \dfrac{{4{k^2}{\beta _4}{\gamma _1} + 3{k^2}{\delta _3}{\kappa _1} - 2{k^2}{\delta _5}{\gamma _1} - 6{\omega ^2}{\beta _4}{\delta _1} + 3{\omega ^2}{\delta _1}{\delta _5} + {\beta _1}{\kappa _1} - 4{\beta _4}{\eta _2} + 5{\delta _5}{\eta _2} - 3{\delta _6}{\eta _1}}}{{3{\eta _1}{\delta _2}}}, \nonumber \\ {N_1}&= {N_{{1_r}}} + i{N_{{1_i}}}, \nonumber \\ {\Gamma _r}&= \dfrac{{6\left( {{\beta _4}{\delta _5} - {\delta _5}^2} \right) \left( {{\lambda _1} - 1} \right) {k^2}{\omega ^2} + \left( {6\lambda _1{\kappa _1}^2 + p \lambda _1{\eta _1}{\kappa _1} + 6{\kappa _1}^2} \right) {k^2} - p {\eta _1}{\kappa _1}}}{{12{\eta _1} \left( { 1 - \lambda _1} \right) {k^2}{\delta _2}\omega }},\nonumber \\ {\Gamma _i}&= \dfrac{{6\lambda _1\left( {{\beta _4} - 2{\delta _5}} \right) {\kappa _1}{k^2} - \left( {\left( {{\beta _4} - 2{\delta _5}} \right) \left( {p {\eta _1}\lambda _1 + 6{\kappa _1}} \right) } \right) {k^2} - p {\eta _1}\left( {{\beta _4} - 2{\delta _5}} \right) }}{{12{\eta _1}\left( { 1 - \lambda _1} \right) {k^2}{\delta _2}}}, \nonumber \\ {\Gamma }&= {\Gamma _r} + {\Gamma _i}, \nonumber \\ {\chi _r}&= \dfrac{{3\left( {{\delta _5} - {\beta _4}} \right) {\delta _3}{k^2}{\omega ^2} + \left( {{\beta _1}{\beta _4} - 2{\beta _1}{\delta _5} - 3{\delta _1}{\kappa _1}} \right) {\omega ^2} + 2{k^2}{\gamma _1}{\kappa _1} - 5{\eta _2}{\kappa _1}}}{{6{\eta _1}{\delta _2}\omega }}, \nonumber \\ {\chi _i}&= \dfrac{{ - \left( {{\beta _4}{\gamma _1} + 3{\delta _3}{\kappa _1}} \right) {k^2} + 3{\omega ^2}\left( {{\beta _4} - {\delta _5}} \right) {\delta _1} + 2{\beta _1}{\kappa _1} + 4{\beta _4}{\eta _2} - 5{\delta _5}{\eta _2} + 3{\delta _6}{\eta _1}}}{{6{\eta _1}{\delta _2}}}, \nonumber \\ {\chi }&= {\chi _r} + {\chi _i} \end{aligned}$$
(35)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamga, A.S.F., Achu, G.F., Kakmeni, F.M.M. et al. Reshaping of breathing pulses to action potential profile propagating in an electromechanical coupled model for biomembranes and nerves. Eur. Phys. J. Plus 139, 58 (2024). https://doi.org/10.1140/epjp/s13360-023-04822-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04822-4

Navigation