Skip to main content
Log in

Singular electromagnetic fields in nonlinear electrodynamics with a constant background field

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

When exploring equations of nonlinear electrodynamics in effective medium formed by mutually parallel external electric and magnetic fields, we come to special static axial-symmetric solutions of two types. The first are comprised of fields referred to as electric and magnetic responses to a point-like electric charge when placed into the medium. In electric case, this is a field determined by the induced charge density. In magnetic case, this is a field carrying no magnetic charge and determined by an induced current. Fields of second type require presence of pseudoscalar constants for their existence. These are singular on the axis drawn along the external fields. In electric case this is a field of an inhomogeneously charged infinitely thin thread. In magnetic case this is the magnetic monopole with the Dirac string supported by solenoidal current. In both cases the necessary pseudoscalar constant is supplied by field derivatives of nonlinear Lagrangian taken on external fields. There is also a magnetic thread solution dual to electric thread with null total magnetic charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Notes

  1. See also Ref. [42, 43] for recent studies on vacuum birefringence effects near magnetars.

  2. There are also other nonlinear models that guarantee convergence [49] of the field energies of monopoles (even if their fields are singular), the Euler-Heisenberg Lagrangian taken to quadratic order of its expansion in powers of the field invariants belonging to this class. Sufficient conditions to be imposed on the growth of nonlinearity with the field may be found in [50].

  3. Other manifestations of the magneto-electric effect were treated in [72,73,74] as nonlinear response.

  4. The most common example of such theory is provided by the famous Euler-Heisenberg Lagrangian taken for \(\mathfrak {L}\left( X\right) \), which is the approximation of the effective Lagrangian of Quantum Electrodynamics fit for slow-varying fields (it is known in literature as calculated with the accuracy of one and two electron-positron loops).

  5. Derivation of Eq. (3) from the action (2) is described in detail in Refs. [72, 73, 77, 79].

  6. as in QED, whose effective Lagrangians are proportional to the fine structure constant \(\alpha =e^{2}/4\pi \).

  7. This is only for brevity. To be precise, we had to say “electric field has the induced charge as its source”. We shall take the liberty to apply such abuse of terminology to magnetic fields as well.

  8. For the angular variables, we use the convention in which the differential volume element is \(d{\textbf{r}}=r^{2}\sin \theta drd\theta d\varphi \).

  9. Beyond pure electrodynamics, the cosmological pseudoscalar field, responsible for the expansion of Universe, may be cosidered as forming the necessary, almost constant, background. In this respect, Ref. [93] (and references therein) should be paid attention, where magnetic solutions are studied under such Lorentz-violating conditions.

References

  1. O. Klein, Z. Phys. 53, 157 (1929)

    Article  ADS  Google Scholar 

  2. F. Sauter, Z. Phys. 69, 742 (1931)

    Article  ADS  Google Scholar 

  3. W. Heisenberg, H. Euler, Z. Phys. 98, 714 (1936)

    Article  ADS  Google Scholar 

  4. V. Weisskopf, Kong. Dans. Vid. Selsk. Math-fys. Medd. XIV, 6 (1936) [English translation in: Early Quantum Electrodynamics: A Source Book, A. I. Miller (University Press, Cambridge, 1994)]

  5. H. Euler, B. Köckel, Naturwiss. 23, 246 (1935)

    Article  ADS  Google Scholar 

  6. J.S. Schwinger, Phys. Rev. 82, 664 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  7. D. Strickland, G. Mourou, Opt. Commun. 56, 219 (1985)

    Article  ADS  Google Scholar 

  8. M. Marklund, P.K. Shukla, Rev. Mod. Phys. 78, 591 (2006)

    Article  ADS  Google Scholar 

  9. G.V. Dunne, Eur. Phys. J. D 55, 327 (2009)

    Article  ADS  Google Scholar 

  10. A. Di Piazza, C. Müller, K.Z. Hatsagortsyan, C.H. Keitel, Rev. Mod. Phys. 84, 1177 (2012)

    Article  ADS  Google Scholar 

  11. R. Battesti, C. Rizzo, Rep. Prog. Phys. 76, 016401 (2013)

    Article  ADS  Google Scholar 

  12. B. King, T. Heinzl, High Power Laser Sci. Eng. 4, e5 (2016)

    Article  Google Scholar 

  13. T. Blackburn, Rev. Mod. Plasma Phys. 4, 5 (2020)

    Article  ADS  Google Scholar 

  14. F. Karbstein, Particles 3, 39 (2020)

    Article  Google Scholar 

  15. A. Gonoskov, T.G. Blackburn, M. Marklund, S.S. Bulanov, Rev. Mod. Phys. 94, 045001 (2022)

    Article  ADS  Google Scholar 

  16. A. Fedotov, A. Ilderton, F. Karbstein, B. King, D. Seipt, H. Taya, G. Torgrimsson, Phys. Rep. 1010, 1 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  17. A.A. Grib, S.G. Mamaev, V.M. Mostepanenko, Vacuum Quantum Effects in Strong Fields (Friedmann Laboratory, St. Petersburg, 1994)

    Google Scholar 

  18. W. Greiner, B. Muller, J. Rafelski, Quantum Electrodynamics Of Strong Fields (Springer, Berlin, 1985)

    Book  Google Scholar 

  19. E.S. Fradkin, D.M. Gitman, S.M. Shvartsman, Quantum Electrodynamics with Unstable Vacuum (Springer, Berlin, 1991)

    Book  Google Scholar 

  20. W. Dittrich, M. Reuter, Effective Lagrangians In Quantum Electrodynamics, Lecture Notes in Physics, vol. 220. (Springer, Berlin, 1985)

    Google Scholar 

  21. W. Dittrich, H. Gies, Probing the Quantum Vacuum. Perturbative Effective Action Approach in Quantum Electrodynamics and its Application, Springer Tracts in Modern Physics, vol. 166. (Springer, Berlin, 2000)

    Google Scholar 

  22. G.V. Dunne, Heisenberg-Euler effective Lagrangians: basics and extensions, in I. Kogan memorial volume, from fields to strings: circumnavigating theoretical physics. ed. by M. Shifman, A. Vainshtein, J. Wheater (World Scientific, Singapore, 2005), p.445

    Chapter  Google Scholar 

  23. G.V. Dunne, Int. J. Mod. Phys. A 27, 1260004 (2012)

    Article  ADS  Google Scholar 

  24. R. Ruffini, G. Vereshchagin, S.-S. Xue, Phys. Rept. 487, 1 (2010)

    Article  ADS  Google Scholar 

  25. F. Gelis, N. Tanji, Prog. Part. Nucl. Phys. 87, 1 (2016)

    Article  ADS  Google Scholar 

  26. M. Aaboud et al. (ATLAS Collaboration), Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC, arXiv:1702.01625. Published in Nature Physics (2017)

  27. S.L. Adler, Ann. Phys. (N.Y.) 67, 599 (1971)

    Article  ADS  Google Scholar 

  28. H. Gies, F. Karbstein, N. Seegert, Phys. Rev. D 93, 085034 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  29. C. Thompson, R.C. Duncan, Mon. Not. R. Astron. Soc. 275, 255 (1995)

    Article  ADS  Google Scholar 

  30. D. Lai, E.E. Salpeter, Phys. Rev. A 52, 2611 (1995)

    Article  ADS  Google Scholar 

  31. W.H. Furry, Phys. Rev. 81, 115 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  32. X. Fan et al., arXiv:1705.00495 (2017)

  33. G. Zavattini et al., EPJC 78, 585Z (2018)

    Article  ADS  Google Scholar 

  34. S.R. Valluri et al., Mon. Not. R. Astron. Soc. 472, 2398 (2017)

    Article  ADS  Google Scholar 

  35. M. Diachenko, O. Novak, R. Kholodov, Ukr. J. Phys. 64, 181 (2019)

    Article  Google Scholar 

  36. T. Erber, Rev. Mod. Phys. 38, 626 (1966)

    Article  ADS  Google Scholar 

  37. Z. Bialynicka-Birula, I. Bialynicki-Birula, Phys. Rev. D 2, 2341 (1970)

    Article  ADS  Google Scholar 

  38. I.A. Batalin, A.E. Shabad, Zh. Eksp. Teor. Fiz. 60, 894 (1971) [Sov. Phys. JETP 33, 483 (1971)]

  39. R.P. Mignani et al., Mon. Not. R. Astron. Soc. 465, 492 (2017)

    Article  ADS  Google Scholar 

  40. S. Kruglov, Int. J. Mod. Phys. A33, 1850023 (2018)

  41. S. Kruglov, Grav. Cosmol. 25, 190 (2019)

  42. C.M. Kim, S.P. Kim, Eur. Phys. J. C 83, 104 (2023). arXiv:2112.02460

    Article  ADS  Google Scholar 

  43. C.M. Kim, S.P. Kim, Eur. Phys. J. C 83, 104 (2023). arXiv:2308.15830

    Article  ADS  Google Scholar 

  44. ATLAS Collaboration, Nat. Phys. 13, 852 (2017)

  45. J. Ellis, N.E. Mavromatos, T. You, Phys. Rev. Lett. 118, 261802 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  46. N.E. Mavromatos, V.A. Mitsou, Int. J. Mod. Phys. A 35, 2030012 (2020)

    Article  ADS  Google Scholar 

  47. J. Ellis, N.E. Mavromatos, P. Roloff, T. You, Eur. Phys. J. C 82, 634 (2022)

    Article  ADS  Google Scholar 

  48. E.S. Fradkin, A.A. Tseytlin, Phys. Lett. 163B, 123 (1985)

    Article  ADS  Google Scholar 

  49. C.V. Costa, D.M. Gitman, A.E. Shabad, Phys. Scr. 90, 074012 (2015)

    Article  ADS  Google Scholar 

  50. T.C. Adorno, D.M. Gitman, A.E. Shabad, A.A. Shishmarev, Russ. Phys. J. 59, 1775 (2017)

    Article  Google Scholar 

  51. I.F. Ginzburg, A. Schiller, Phys. Rev. D 60, 075016 (1999)

    Article  ADS  Google Scholar 

  52. L.N. Epele, H. Fanchiotti, C.A.G. Canal, V.A. Mitsou, V. Vento, Eur. Phys. J. Plus 127, 60 (2012)

    Article  Google Scholar 

  53. K. Colwell, J. Terning, JHEP 1603, 068 (2016)

    Article  ADS  Google Scholar 

  54. N.E. Mavromatos, V.A. Mitsou, in EPJ Web of Conferences, vol. 164, 04001 (2017)

  55. V.A. Mitsou (MoEDAL), J. Phys: Conf. Ser. 2375, 012002 (2022)

  56. V.A. Mitsou (MoEDAL), PoS EPS-HEP2021 704 (2022)

  57. E. Musumeci, V.A. Mitsou, PoS ICHEP2022 1025 (2023)

  58. MoEDAL collaboration, JHEP 08, 067 (2016)

  59. MoEDAL collaboration, Phys. Lett. B 782, 510 (2018)

  60. MoEDAL collaboration, Phys. Rev. Lett. 123, 021802 (2019)

  61. O. Gould, A. Rajantie, Phys. Rev. Lett. 119, 241601 (2017)

    Article  ADS  Google Scholar 

  62. A. Rajantie, Monopole-antimonopole pair production by magnetic fields. Philos. Trans. R. Soc. A 377, 20190333 (2019)

    Article  ADS  Google Scholar 

  63. O. Gould, D.L.J. Ho, A. Rajantie, Phys. Rev. D 100, 015041 (2019)

    Article  ADS  Google Scholar 

  64. D.L.J. Ho, A. Rajantie, Phys. Rev. D 101, 055003 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  65. O. Gould, D.L.J. Ho, A. Rajantie, Phys. Rev. D 104, 015033 (2021)

    Article  ADS  Google Scholar 

  66. P. Gaete, J.A. Helayël-Neto, Eur. Phys. J. C 83, 128 (2023)

    Article  ADS  Google Scholar 

  67. R. Essig et al. arXiv:1311.0029

  68. S. Villalba-Chávez, A.E. Shabad, C. Müller, Eur. Phys. J. C 81, 331 (2021)

    Article  ADS  Google Scholar 

  69. J.-F. Fortin, K. Sinha, JCAP 11, 020 (2019)

    Article  ADS  Google Scholar 

  70. J.M.A. Paixão, L.P.R. Ospedal, M.J. Neves, J.A. Helayël-Neto, JHEP 10, 160 (2022)

    Article  ADS  Google Scholar 

  71. M.J. Neves, P. Gaete, L.P.R. Ospedal, J.A. Helayël-Neto, J. Phys. A Math. Theor. 56, 415701 (2023)

    Article  Google Scholar 

  72. D.M. Gitman, A.E. Shabad, Phys. Rev. D 86, 125028 (2012)

    Article  ADS  Google Scholar 

  73. T.C. Adorno, D.M. Gitman, A.E. Shabad, Eur. Phys. J. C 74, 2838 (2014)

    Article  ADS  Google Scholar 

  74. T.C. Adorno, D.M. Gitman, A.E. Shabad, Phys. Rev. D 89, 047504 (2014)

    Article  ADS  Google Scholar 

  75. V.I. Ritus, in Issues in Intense-Field Quantum Electrodynamics, Proc. Lebedev Phys. Inst.vol. 168, 5, Ed. V.L. Ginzburg (Nova Science Publ., New York, 1987)

  76. M. Born, L. Infeld, Proc. R. Soc. A 144, 425 (1934)

    ADS  Google Scholar 

  77. T.C. Adorno, D.M. Gitman, A.E. Shabad, Eur. Phys. J. C 80, 308 (2020)

    Article  ADS  Google Scholar 

  78. T.C. Adorno, D.M. Gitman, A.E. Shabad, arXiv:1710.00138v2 [hep-th] 30 Sep 2019

  79. T.C. Adorno, D.M. Gitman, A.E. Shabad, Phys. Rev. D 93, 125031 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  80. T.C. Adorno, D.M. Gitman, A.E. Shabad, Phys. Rev. D 92, 041702(R) (2015)

    Article  ADS  Google Scholar 

  81. R. Heras, Contemp. Phys. 59, 331 (2018)

    Article  ADS  Google Scholar 

  82. Y.M. Shnir, Magnetic Monopoles (Springer, Berlin, 2005)

    Book  MATH  Google Scholar 

  83. P.A.M. Dirac, Proc. R. Soc. Lond. A 133, 60 (1931)

    Article  ADS  Google Scholar 

  84. N.E. Mavromatos, V.A. Mitsou, Int. J. Mod. Phys. A 35, 2030012 (2020)

    Article  ADS  Google Scholar 

  85. M. Dunia, T.J. Evans, D. Singleton, Phys. Rev. D 103, 128501 (2021)

    Article  ADS  Google Scholar 

  86. P.A.M. Dirac, Phys. Rev. 74, 817 (1948)

    Article  ADS  MathSciNet  Google Scholar 

  87. Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  88. M. Peshkin, A. Tonomura, The Aharonov–Bohm Effect (Springer-Verlag, Berlin, 1989)

    Book  Google Scholar 

  89. M. Dunia, P.Q. Hung, D. Singleton, Eur. Phys. J. C 83, 487 (2023)

    Article  ADS  Google Scholar 

  90. G. ’t Hooft, Nucl. Phys. B 79, 276 (1974)

    Article  ADS  Google Scholar 

  91. A.M. Polyakov, JETP Lett. 20, 194 (1974)

    ADS  Google Scholar 

  92. S. Rossi, ETH Zürich, https://ethz.ch/content/dam/ethz/special-interest/phys/theoretical-physics/itp-dam/documents/gaberdiel/proseminar_fs2018/20_Rossi.pdf

  93. S. Karki, B. Altschul, Phys. Rev. D 102, 035009 (2020)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

TC Adorno acknowledges the support from the XJTLU Research Development Funding, award no. RDF-21-02-056, and DM Gitman thanks CNPq for permanent support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. C. Adorno.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adorno, T.C., Gitman, D.M. & Shabad, A.E. Singular electromagnetic fields in nonlinear electrodynamics with a constant background field. Eur. Phys. J. Plus 138, 1036 (2023). https://doi.org/10.1140/epjp/s13360-023-04655-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04655-1

Navigation