Skip to main content
Log in

Impact of self-steepening and intra-pulse Raman scattering on modulation instability in multiple quantum wells

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper presents the impact of self-steepening (SS) and intra-pulse Raman scattering (IRS) on stabilization of modulation instability of a continuous wave probe field in semiconductor double quantum wells under the mechanism of electromagnetically induced transparency, driven by a controlling field. By adjusting the control field and its related parameters, the linear absorption of the probe is comparatively reduced, and simultaneously, the nonlinear coefficient specifically Kerr nonlinearity is enhanced under the optically induced transparency. Due to the presence of SS, the instability gain and frequency bandwidth of gain are dramatically suppressed at higher values of probe peak power \( P_0 \). Further, the combined effect of SS and IRS on instability gain enhances the number of frequency sidebands with the increase in \( P_0 \). The probe field can be stabilized against modulation instability, to an extent of desired frequency bandwidth by suitably selecting the SS and IRS, supported by control field Rabi frequency \( \Omega _c \). The results of these investigation offer a novel method for the generation of solitonic or ultrashort optical pulses in the context of high-speed data transmission through optical media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

The manuscript has no associated data, or the data will not be deposited.

References

  1. Y. Liu, Y. Xiang, A.A. Mohammed, Laser Phys. Lett. 19, 0952005 (2022)

    Google Scholar 

  2. P. Panchadhyayee, B.K. Dutta, Sci. Rep. 12, 22369 (2022)

    Article  ADS  Google Scholar 

  3. H. Tang, D.-L. Wang, Y. She, J. Ding, S. Xiao, Euro. Phys. J. D 70, 22 (2016)

    Article  ADS  Google Scholar 

  4. J.F. Dynes, M.D. Frogley, J. Rodger, C.C. Philips, Phys. Rev. B 72, 085323 (2005)

    Article  ADS  Google Scholar 

  5. M.D. Frogley, J.F. Dynes, M. Beck, J. Faist, C.C. Philips, Nat. Mater. 5, 175 (2006)

    Article  ADS  Google Scholar 

  6. W.X. Wang, J.M. Hou, R.K. Lee, Phys. Rev. A 77, 033838 (2008)

    Article  ADS  Google Scholar 

  7. C. Zhu, H. Huang, Phys. Rev. B 80, 235408 (2009)

    Article  ADS  Google Scholar 

  8. C. Kang, Z. Wang, B. Wu, Laser Phys. Lett. 13, 036101 (2016)

    Article  ADS  Google Scholar 

  9. J.P. Marangos, J. Mod. Opt. 45, 471–503 (1998)

    Article  ADS  Google Scholar 

  10. M. Fleischhauer, A. Imamoglu, J.P. Marangos, Rev. Mod. Phys. 77, 633–673 (2005)

    Article  ADS  Google Scholar 

  11. Y. Zhang, Z. Wang, J. Qiu, Y. Hong, B. Wu, Appl. Phys. Lett. 115, 171905 (2019)

    Article  Google Scholar 

  12. J. Qiu, Z. Wang, D. Ding, W. Li, B. Yu, Opt. Exp. 28, 2975 (2020)

    Article  Google Scholar 

  13. J.-H. Wu, J.-Y. Gao, J.-H. Xu, L. Silvestri, M. Artoni, G.C. La Rocca, F. Bassani, Phys. Rev. Lett. 95, 057401 (2005)

    Article  ADS  Google Scholar 

  14. S.H. Kazemi, M. Mahmoudi, Laser Phys. Lett. 16, 076001 (2016)

    Article  Google Scholar 

  15. Z. Wang, B. Yu, S. Zhen, X. Wu, J. Luminesc. 134, 272 (2013)

    Article  ADS  Google Scholar 

  16. H. Wang, D. Goorskey, M. Xiao, Phys. Rev. Lett. 87, 073601 (2001)

    Article  ADS  Google Scholar 

  17. H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, Z. Xu, Phys. Rev. B 74, 155314 (2006)

    Article  ADS  Google Scholar 

  18. N. Borgohain, M. Belic, S. Konar, Ann. Phys. 361, 107 (2015)

    Article  Google Scholar 

  19. Y. Wu, L. Deng, Phys. Rev. Lett. 93, 143904 (2004)

    Article  ADS  Google Scholar 

  20. N. Borgohain, S. Konar, Opt. Laser Technol. 120, 105684 (2019)

    Article  Google Scholar 

  21. Y.-C. Wei, B.-H. Wu, Y.-F. Hsiao, P.-J. Tsai, Y.-C. Chen, Phys. Rev. A 102, 063720 (2020)

    Article  ADS  Google Scholar 

  22. L.-W. Luo, N. Ophir, C.P. Chen, L.H. Gabrielli, C.B. Poitras, K. Bergmen, M. Lipson, Nat. Commun. 5, 3069 (2014)

    Article  ADS  Google Scholar 

  23. B.E. Schmidt, N. Thire’, M. Boivin, A. Larame’e, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, F. Legare, Nat. Commun. 5, 3643 (2014)

    Article  ADS  Google Scholar 

  24. C. Trovatello, A. Marini, X. Xu, C. Lee, F. Liu, N. Curreli, C. Manzoni, S.D. Conte, K. Yao, A. Ciattoni, J. Hone, X. Zhu, P.J. Schuck, G. Cerullo, Nat. Photonics 15, 6 (2021)

    Article  ADS  Google Scholar 

  25. G.P. Agrawal, Nonlinear Fiber Optics, 4th edn. (Academic Press, San Diego, 2007)

    MATH  Google Scholar 

  26. W.P. Hong, Opt. Commun. 213, 173 (2002)

    Article  ADS  Google Scholar 

  27. W.P. Hong, Phys. Rev. Lett. 126, 243901 (2021)

    Article  Google Scholar 

  28. K. Nithyanandan, R.V.J. Raja, K. Porsezian, J. Opt. Soc. Am. B 30, 178 (2013)

    Article  ADS  Google Scholar 

  29. J.H.V. Nguyen, D. Luo, R.G. Hulet, Science 356, 422 (2017)

    Article  ADS  Google Scholar 

  30. R.V.J. Raja, K. Porsezian, K. Nithyanandan, Phys. Rev. A 82, 013825 (2010)

    Article  ADS  Google Scholar 

  31. H. Yang, N. Chen, B. Wang, P. Tang, Q. Zeng, J. Mod. Opt. 63, 1370 (2016)

    Article  ADS  Google Scholar 

  32. S. Sudo, H. Itoh, K. Okamoto, K. Kubodera, Appl. Phys. Lett. 54, 993 (1989)

    Article  ADS  Google Scholar 

  33. T. Liu, M.T. Yin, J.P. Rong, S.Z. Qiang, H.D. Ren, Z.L. Cao, F.L. Xian, M.Z. Yang, J.H. Li, Phys. Lett. A 425, 127869 (2022)

    Article  Google Scholar 

  34. K. Nithyanandan, R.V.J. Raja, K. Porsezian, Phys. Rev. A 87, 043805 (2013)

    Article  ADS  Google Scholar 

  35. M. Saha, A.K. Sarma, Opt. Commun. 291, 321 (2013)

    Article  ADS  Google Scholar 

  36. M.F. Saleh, W. Chang, J.C. Travers, P. St, J. Russell, F. Biancalana, Phys. Rev. Lett. 109, 113902 (2012)

    Article  ADS  Google Scholar 

  37. K.K. Ndebele, C.B. Tabi, C.G.L. Tiofack, T.C. Kofané, Phys. Rev. E 104, 044208 (2021)

    Article  ADS  Google Scholar 

  38. V.I. Kruglov, H. Triki, Phys. Rev. A 103, 013521 (2021)

    Article  ADS  Google Scholar 

  39. C. Liu, Y.-H. Wu, S.-C. Chen, X. Yao, N. Akhmediev, Phys. Rev. Lett. 127, 094102 (2021)

    Article  ADS  Google Scholar 

  40. I.M. Uzunov, T.N. Arabadzhiev, S.G. Nikolov, Optik 271, 170137 (2022)

    Article  ADS  Google Scholar 

  41. B. Mani, A. Jawahar, S. Radha, K. Chitra, A. Sivasubramanian, Photonic Netw. Commun. 32, 73 (2016)

    Article  Google Scholar 

  42. S. Abbagari, Y. Saliou, A. Houwe, L. Akinyemi, M. Inc, T.B. Bouetou, Phys. Lett. A 442, 128191 (2022)

    Article  Google Scholar 

  43. A.K. Mishra, A. Kumar, J. Opt. Soc. Am. B 34, 2203 (2017)

    Article  ADS  Google Scholar 

  44. K. Nithyanandan, R.V.J. Raja, K. Porsezian, B. Kalithasan, Phys. Rev. A 86, 023827 (2012)

    Article  ADS  Google Scholar 

  45. S. Abbagari, A. Houwe, L. Akinyemi, Y. Saliou, T. Bouetou, Chaos Solitons Fract. 160, 112255 (2022)

    Article  Google Scholar 

  46. P. Mohanraj, R. Sivakumar, M. Vijayakumar, Optik 270, 169967 (2022)

    Article  ADS  Google Scholar 

  47. P. Mohanraj, R. Sivakumar, A. Joseph, J. Kaliyamurthy, Eur. Phys. J. Plus 138, 351 (2023)

    Article  Google Scholar 

  48. S.A. Madani, M. Bahrami, A. Rostami, Phys. Scr. 97, 045501 (2022)

    Article  ADS  Google Scholar 

  49. M. Inc, R.T. Alqahtani, Opt. Quant. Electron. 55, 362 (2023)

    Article  Google Scholar 

  50. T. Bunel, M. Conforti, Z. Ziani, J. Lumeau, A. Moreau, A. Fernandez, O. Llopis, J. Roul, A.M. Perego, K.K.Y. Wong, A. Mussot, Opt. Lett. 48, 275 (2023)

    Article  ADS  Google Scholar 

  51. X.M. Liu, J. Lightwave Technol. 29, 179 (2011)

    Article  ADS  Google Scholar 

  52. C. Wei, M. Zhou, Z.H. Juan, Chin. Phys. B 21, 094215 (2012)

    Article  ADS  Google Scholar 

  53. J.M. Dudley, G. Genty, S. Coen, Rev. Mod. Phys. 78, 1135 (2006)

    Article  ADS  Google Scholar 

  54. S. Shwetanshumala, S. Konar, A. Biswas, Appl. Phys. B 111, 53 (2013)

    Article  ADS  Google Scholar 

  55. N. Borgohain, S. Konar, J. Appl. Phys. 119, 213103 (2016)

    Article  ADS  Google Scholar 

  56. R. Mukherjee, S. Konar, Res. Phys. 17, 103090 (2020)

    Google Scholar 

  57. R. Mukherjee, S. Konar, P. Mishra, Phys. Rev. A 103, 033517 (2021)

    Article  ADS  Google Scholar 

  58. J.F. Dynes, M.D. Frogley, M. Beck, J. Faist, C.C. Phillips, Phys. Rev. Lett. 94, 157403 (2005)

    Article  ADS  Google Scholar 

  59. P. Harrison, A. Valavanis, Quantum Wells, Wires, and Dots, 4th edn (Wiley, New York, 2016)

  60. D. Han, Y. Zeng, Y. Bai, Optik 124, 1641 (2013)

    Article  ADS  Google Scholar 

  61. W.-X. Yang, R.-K. Lee, Euro. Lett. 83, 14002 (2008)

    Article  ADS  Google Scholar 

  62. J. Liu, T. Liu, H. Li, X.-T. Xie, D.N. Wang, R.-K. Lee, Euro. Lett. 112, 56002 (2015)

    Article  ADS  Google Scholar 

  63. N. Borgohain, M. Belić, S. Konar, J. Opt. 18, 115001 (2016)

    Article  ADS  Google Scholar 

  64. Y. Song, L. Li, T. Shui, D. Hu, W.-X. Yang, Front. Phys. 10, 907284 (2022)

    Article  Google Scholar 

  65. G. Huang, L. Deng, M.G. Payne, Phys. Rev. E 72, 016617 (2005)

    Article  ADS  Google Scholar 

  66. Y. Dong, D. Wang, Y. Wang, J. Ding, Phys. Lett. A 382, 2006 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  67. A.S. Reyna, C.B. de Araújo, Opt. Exp. 22, 22456 (2014)

    Article  Google Scholar 

  68. G. Chen, R. Rapaport, O. Mitrofanov, C. Gmachl, H.M. Ng, Phys. State Sol. B 240, 384 (2003)

    Article  ADS  Google Scholar 

  69. J.H. Li, K.S. Chiang, K.W. Chow, J. Opt. Soc. Am. B 28, 1693 (2011)

    Article  ADS  Google Scholar 

  70. A.K.S. Ali, K. Porsezian, T. Uthayakumar, Phys. Rev. E 90, 042910 (2014)

    Article  ADS  Google Scholar 

  71. P. Mohanraj, R. Sivakumar, M. Vijayakumar, J. Kaliyamurthy, Optik 271, 170094 (2022)

    Article  ADS  Google Scholar 

  72. A.A. Nair, K. Porsezian, M. Jayaraju, Eur. Phys. J. D 72, 6 (2018)

    Article  ADS  Google Scholar 

  73. W.-C. Xu, S.-M. Zhang, W.-C. Chen, A.-P. Luo, S.-H. Liu, Opt. Commun. 199, 355 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the Editor & potential Reviewers for their insightful comments which have been very helpful in improving the quality of the manuscript. Authors RM and NB thank SBU and USTM, respectively, for carry out this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Mukherjee.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interests in this publication.

Appendix

Appendix

The analytical expression of the right-hand side of Eqs. (15)–(17) is given by

$$\begin{aligned} M^{(1)}= & {} N^{(1)}=R^{(1)}=0, \end{aligned}$$
(56)
$$\begin{aligned} M^{(2)}= & {} -i\frac{\partial a_2^{(1)}}{\partial t_1}, N^{(2)}=-i\frac{\partial a_3^{(1)}}{\partial t_1}, \end{aligned}$$
(57)
$$\begin{aligned} R^{(2)}= & {} -i\left( \frac{\partial }{\partial z_1}+\frac{1}{c}\frac{\partial }{\partial t_1}\right) \Omega _p^{(1)}, \end{aligned}$$
(58)
$$\begin{aligned} M^{(3)}= & {} -i\frac{\partial a_2^{(2)}}{\partial t_1}, N^{(3)}=-i\frac{\partial a_3^{(2)}}{\partial t_1}-\Omega _p^{(1)}a_1^{(2)}, \end{aligned}$$
(59)
$$\begin{aligned} R^{(3)}= & {} -i\left( \frac{\partial \Omega _p^{(2)}}{\partial z_1}+\frac{\partial \Omega _p^{(1)}}{\partial z_2}+\frac{1}{c}\frac{\partial \Omega _p^{(2)}}{\partial t_1}\right) -\kappa a_3^{(1)}a_1^{(2)^*}, \end{aligned}$$
(60)
$$\begin{aligned} M^{(4)}= & {} -i\frac{\partial a_2^{(3)}}{\partial t_1}, N^{(4)}=-i\frac{\partial a_3^{(3)}}{\partial t_1}-\Omega _p^{(1)}a_1^{(3)}-\Omega _p^{(2)}a_1^{(2)},\end{aligned}$$
(61)
$$\begin{aligned} R^{(4)}= & {} -i\left( \frac{\partial \Omega _p^{(3)}}{\partial z_1}+\frac{\partial \Omega _p^{(2)}}{\partial z_2}+\frac{\partial \Omega _p^{(1)}}{\partial z_3}+\frac{1}{c}\frac{\partial \Omega _p^{(3)}}{\partial t_1}\right) -\kappa (a_3^{(1)}a_1^{(3)^*}+a_3^{(2)}a_1^{(2)^*}). \end{aligned}$$
(62)

The elements of the matrix associated with MI are given by

$$\begin{aligned}{} & {} T_{11}(\Omega )=\left\{ -\frac{\beta _2}{2}\Omega ^2-\frac{\beta _3}{6}\Omega ^3+\gamma P_0+P_0 \Omega (2s-\tau _R)\right\} , \end{aligned}$$
(63)
$$\begin{aligned}{} & {} T_{22} (\Omega )=\left\{ \frac{\beta _2}{2}\Omega ^2-\frac{\beta _3}{6}\Omega ^3-\gamma P_0+P_0 \Omega (2s-\tau _R)\right\} , \end{aligned}$$
(64)
$$\begin{aligned}{} & {} T_{12} (\Omega )=\gamma P_0+P_0 \Omega (s-\tau _R), \end{aligned}$$
(65)
$$\begin{aligned}{} & {} T_{21} (\Omega )=-\gamma P_0+P_0 \Omega (s-\tau _R). \end{aligned}$$
(66)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, R., Borgohain, N. Impact of self-steepening and intra-pulse Raman scattering on modulation instability in multiple quantum wells. Eur. Phys. J. Plus 138, 867 (2023). https://doi.org/10.1140/epjp/s13360-023-04509-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04509-w

Navigation