Skip to main content
Log in

Dynamic response of a system of interactive species influenced by fear and Allee consequences

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The present pursuit is focused on the influence of both the facets of fear and Allee on the dynamic feedback of the model system of interacting species. Apart from the consideration of intra-specific competition of both species to make more dynamic intricacy, the ratio-dependent functional response is taken into account for the ecological compatibility of the system. The usage of the additive Allee effect helps one to estimate the impact on the interactions of predator and prey species. The particular circumstances for the extinction of both species are discussed based on the establishment of fundamental mathematical concepts necessary for the system. The existence of ecologically significant equilibria, including their stability, is explored. In spite of having a ratio-dependent functional response, the response of the system in proximity to the origin is examined by pursuing a particular method duly modified. The mandatory analytical parametric conditions for the stability criteria of the system are validated numerically through the exhibition of results obtained. The main finding of this research is that in a system of interacting species, fear and Allee may produce codimension 1 and 2 bifurcation structures. For parameter values within the bifurcating domain, additional theoretical dynamics are also formed and are clearly explored in the present research. The system experiences all possible local and global bifurcations including Hopf, saddle-node, Bautin, Bogdanov–Takens, and homoclinic subject to the combined influence of fear and Allee factors. The first Lyapunov number is made use of to analyse the stability of the Hopf-bifurcating limit cycle. The impact of fear and Allee effect around the coexistence equilibrium of the system is not ruled out, however, to examine from the present system. The sensitivity analysis of the model parameters with respect to fixed coexistence is also performed comprehensively. The numerical simulations are carried out finally for the purpose of validation of the present theoretical outcomes with supportive numerical counterparts and its application in the realm of ecology in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability Statement

Data sharing does not apply to this article as no dataset and code were generated or analyzed during the current study.

References

  1. A.J. Lotka, Elements of Physical Biology (Williams & Wikins, Philadelphia, 1925)

    MATH  Google Scholar 

  2. V. Volterra, Fluctuations in the abundance of a species considered mathematically. Nature 118(2972), 558–560 (1926)

    Article  ADS  MATH  Google Scholar 

  3. H.I. Freedman, Deterministic Mathematical Models in Population Ecology (Marcel Dekker Incorporated, New York, 1980)

    MATH  Google Scholar 

  4. G.F. Gause, The Struggle for Existence (Williams and Wilkins, Baltimore, 1935)

    Google Scholar 

  5. A.D. Bazykin, A.I. Khibnik, B. Krauskopf, Nonlinear Dynamics of Interacting Populations (World Scientific Publishing Company Incorporated, Singapore, 1998)

    Book  Google Scholar 

  6. A.D. Bazykin, Structural and Dynamic Stability of Model Predator-Prey Systems (International Institute for Applied Systems Analysis, Laxenburg, 1976)

    MATH  Google Scholar 

  7. Y. Kuznetsov, Elements of Applied Bifurcation Theory (Springer, New York, 1998)

    MATH  Google Scholar 

  8. A.D. Bazykin, F.S. Brezovskaya, T.I. Buriev, Dynamics of predator-prey system including predator saturation and competition, Faktory Raznoobraziya v Matematicheskoi Ekologii i Populyatsionnoi Genetike, Pushchino, 6–33 (1980)

  9. J. Hainzl, Stability and Hopf bifurcation in a predator-prey system with several parameters. SIAM J. Appl. Math. 48(1), 170–190 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Seo, M. Kot, A comparison of two predator-prey models with Holling’s type I functional response. Math. Biosci. 212(2), 161–179 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Seo, D.L. DeAngelis, A predator-prey model with a Holling type I functional response including a predator mutual interference. J. Nonlinear Sci. 21(6), 811–833 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. R.E. Kooij, A. Zegeling, Predator-prey models with non-analytical functional response. Chaos Solitons Fractals 123, 163–172 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. R.M. May, Stability and Complexity in Model Ecosystems (Princeton University Press, Princeton, 1973)

    Google Scholar 

  14. S.B. Hsu, On global stability of a predator-prey system. Math. Biosci. 39(1–2), 1–10 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. L.P. Liu, K.S. Cheng, On the uniqueness of a limit cycle for a predator-prey system. SIAM J. Math. Anal. 19(4), 867–878 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Y. Kuang, H.I. Freedman, Uniqueness of limit cycles in Gause-type models of predator-prey systems. Math. Biosci. 88(1), 67–84 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. H.I. Freedman, G.S.K. Wolkowicz, Predator-prey systems with group defence: the paradox of enrichment revisited. Bull. Math. Biol. 48(5–6), 493–508 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. Lamontagne, C. Coutu, C. Rousseau, Bifurcation analysis of a predator-prey system with generalised Holling type III functional response. J. Dyn. Differ. Equ. 20(3), 535–571 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. G.S.K. Wolkowicz, Bifurcation analysis of a predator-prey system involving group defence. SIAM J. Appl. Math. 48(3), 592–606 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. F. Rothe, D.S. Shafer, Multiple bifurcation in a predator-prey system with nonmonotonic predator response. Proc. Roy. Soc. Edinburgh Sect. A Math. 120(3–4), 313–347 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Xiao, S. Ruan, Global analysis in a predator-prey system with nonmonotonic functional response. SIAM J. Appl. Math. 61(4), 1445–1472 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Zhu, C.S.A. Campbell, G.S. Wolkowicz, Bifurcation analysis of a predator-prey system with nonmonotonic functional response. SIAM J. Appl. Math. 63(2), 636–682 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. J.C. Huang, D.M. Xiao, Analyses of bifurcations and stability in a predator-prey system with Holling type-IV functional response. Acta Math. Appl. Sin. 20(1), 167–178 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. C. Li, H. Zhu, Canard cycles for predator-prey systems with Holling types of functional response. J. Differ. Equ. 254(2), 879–910 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. P. Turchin, Complex Population Dynamics (Princeton University Press, Princeton, 2013)

    Book  MATH  Google Scholar 

  26. R.J. Taylor, Predation (Chapman and Hall, London, 1984)

    Book  Google Scholar 

  27. J.B. Collings, The effects of the functional response on the bifurcation behavior of a mite predator-prey interaction model. J. Math. Biol. 36(2), 149–168 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. R. Arditi, L.R. Ginzburg, Coupling in predator-prey dynamics: ratio-dependence. J. Theor. Biol. 139(3), 311–326 (1989)

    Article  ADS  Google Scholar 

  29. M. Haque, Ratio-dependent predator-prey models of interacting populations. Bull. Math. Biol. 71(2), 430–452 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Z. Eskandari, Z. Avazzadeh, R. K. Ghaziani, Theoretical and numerical bifurcation analysis of a predator-prey system with ratio-dependence. Math. Sci. 1–12 (2023)

  31. P. Justin, M. Clinchy, L.M. Dill, D. Roberts, L.Y. Zanette, Fear of large carnivores causes a trophic cascade. Nat. Commun. 7(1), 1–7 (2016)

    Google Scholar 

  32. X. Wang, L. Zanette, X. Zou, Modelling the fear effect in predator-prey interactions. J. Math. Biol. 73(5), 1179–1204 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. X. Wang, X. Zou, Modeling the fear effect in predator-prey interactions with adaptive avoidance of predators. Bull. Math. Biol. 79(6), 1325–1359 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Y. Li, M. He, Z. Li, Dynamics of a ratio-dependent Leslie-Gower predator-prey model with Allee effect and fear effect. Math. Comput. Simul. 201, 417–439 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  35. D. Pal, D. Kesh, D. Mukherjee, Qualitative study of cross-diffusion and pattern formation in Leslie-Gower predator-prey model with fear and Allee effects. Chaos Solitons Fractals 167, 113033 (2023)

    Article  MathSciNet  Google Scholar 

  36. M. Chen, Y. Takeuchi, J.F. Zhang, Dynamic complexity of a modified Leslie–Gower predator-prey system with fear effect. Commun. Nonlinear Sci. Numer. Simul., 107109 (2023)

  37. G. Mandal, N. Ali, L.N. Guin, S. Chakravarty, Impact of fear on a tri-trophic food chain model with supplementary food source. Int. J. Dyn. Control, 1–34 (2023)

  38. W. Cresswell, Predation in bird populations. J. Ornithol. 152(1), 251–263 (2011)

    Article  Google Scholar 

  39. N. Pettorelli, T. Coulson, S.M. Durant, J.-M. Gaillard, Predation, individual variability and vertebrate population dynamics. Oecologia 167(2), 305–314 (2011)

    Article  ADS  Google Scholar 

  40. S. Creel, D. Christianson, Relationships between direct predation and risk effects. Trends in Ecology & Evolution 23(4), 194–201 (2008)

    Article  Google Scholar 

  41. A.J. Wirsing, W.J. Ripple, A comparison of shark and wolf research reveals similar behavioral responses by prey. Front. Ecol. Environ. 9(6), 335–341 (2011)

    Article  Google Scholar 

  42. M.J. Sheriff, C.J. Krebs, R. Boonstra, The sensitive hare: sublethal effects of predator stress on reproduction in snowshoe hares. J. Anim. Ecol. 78(6), 1249–1258 (2009)

    Article  Google Scholar 

  43. L.Y. Zanette, A.F. White, M.C. Allen, M. Clinchy, Perceived predation risk reduces the number of offspring songbirds produce per year. Science 334(6061), 1398–1401 (2011)

    Article  ADS  Google Scholar 

  44. X. Wang, L. Zanette, X. Zou, Modelling the fear effect in predator-prey interactions. J. Math. Biol. 73(5), 1179–1204 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. J. Wang, Y. Cai, S. Fu, W. Wang, The effect of the fear factor on the dynamics of a predator-prey model incorporating the prey refuge. Chaos Interdiscip. J. Nonlinear Sci. 29(8), 083109 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. S. Samaddar, M. Dhar, P. Bhattacharya, Effect of fear on prey-predator dynamics: exploring the role of prey refuge and additional food. Chaos Interdiscip. J. Nonlinear Sci. 30(6), 063129 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  47. R. Han, L.N. Guin, B. Dai, Cross-diffusion-driven pattern formation and selection in a modified Leslie–Gower predator-prey model with fear effect. J. Biol. Syst. 28(01), 27–64 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  48. W.C. Allee, Animal Aggregations. A Study in General Sociology (University of Chicago Press, Chicago, 1933)

    Google Scholar 

  49. F. Courchamp, T. Clutton-Brock, B. Grenfell, Inverse density dependence and the Allee effect. Trends Ecol. Evolut. 14(10), 405–410 (1999)

    Article  Google Scholar 

  50. P. Stephens, W. Sutherland, R. Freckleton, What is the Allee effect? Oikos, 185–190 (1999)

  51. P.A. Stephens, W.J. Sutherland, Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol. Evolut. 14(10), 401–405 (1999)

    Article  Google Scholar 

  52. F. Courchamp, L. Berec, J. Gascoigne, Allee Effects in Ecology and Conservation (Oxford University Press, New York, 2008)

    Book  Google Scholar 

  53. L.A. Dugatkin, Cooperation Among Animals: An Evolutionary Perspective (Oxford University Press, New York, 1997)

    Google Scholar 

  54. A.M. Kramer, B. Dennis, A.M. Liebhold, J.M. Drake, The evidence for Allee effects. Popul. Ecol. 51(3), 341–354 (2009)

    Article  Google Scholar 

  55. S.D. Gregory, C.J. Bradshaw, B.J. Brook, F. Courchamp, Limited evidence for the demographic Allee effect from numerous species across taxa. Ecology 91(7), 2151–2161 (2010)

    Article  Google Scholar 

  56. W.Z. Lidicker, The Allee effect: its history and future importance. Open Ecol. J., 3(1) (2010)

  57. S.R. Zhou, Y.F. Liu, G. Wang, The stability of predator-prey systems subject to the Allee effects. Theor. Popul. Biol. 67(1), 23–31 (2005)

    Article  MATH  Google Scholar 

  58. F. Courchamp, B. Grenfell, T. Clutton-Brock, Impact of natural enemies on obligately cooperative breeders. Oikos 91(2), 311–322 (2000)

    Article  Google Scholar 

  59. A. Kent, C. Patrick Doncaster, T. Sluckin, Consequences for predators of rescue and Allee effects on prey. Ecol. Model. 162(3), 233–245 (2003)

    Article  Google Scholar 

  60. L.N. Guin, G. Mandal, M. Mondal, S. Chakravarty, A chaotic tri-trophic food chain model supplemented by Allee effect. Int. J. Dyn. Control, 1–27 (2022)

  61. M. Liermann, R. Hilborn, Depensation: evidence, models and implications. Fish Fish. 2(1), 33–58 (2001)

    Article  Google Scholar 

  62. A.M. De Roos, L. Persson, Size-dependent life-history traits promote catastrophic collapses of top predators. Proc. Natl. Acad. Sci. 99(20), 12907–12912 (2002)

    Article  ADS  Google Scholar 

  63. A.M. De Roos, L. Persson, H.R. Thieme, Emergent Allee effects in top predators feeding on structured prey populations. Proc. Roy. Soc. Lond. Ser. B Biol. Sci. 270(1515), 611–618 (2003)

    Article  Google Scholar 

  64. A. Verdy, Modulation of predator-prey interactions by the Allee effect. Ecol. Model. 221(8), 1098–1107 (2010)

    Article  Google Scholar 

  65. D.H. Brown, H. Ferris, S. Fu, R. Plant, Modeling direct positive feedback between predators and prey. Theor. Popul. Biol. 65(2), 143–152 (2004)

    Article  MATH  Google Scholar 

  66. L. Berec, Impacts of foraging facilitation among predators on predator-prey dynamics. Bull. Math. Biol. 72(1), 94–121 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  67. E.D. Conway, J.A. Smoller, Global analysis of a system of predator-prey equations. SIAM J. Appl. Math. 46(4), 630–642 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  68. V. Van, A.K. George, L. Hemerik, M.P. Boer, B.W. Kooi, Heteroclinic orbits indicate overexploitation in predator-prey systems with a strong Allee effect. Math. Biosci. 209(2), 451–469 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  69. C.W. Clark, Mathematical bioeconomics. Math. Prob. Biol., 29–45 (1974)

  70. C.W. Clark, The Worldwide Crisis in Fisheries: Economic Models and Human Behavior (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  71. L. Perko, Differential Equations and Dynamical Systems (Springer, New York, 2001)

    Book  MATH  Google Scholar 

  72. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos (Springer, New York, 2003)

    MATH  Google Scholar 

  73. N. Chitnis, J.M. Hyman, J.M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull. Math. Biol. 5, 1272–1296 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  74. M.D. Samsuzzoha, M. Singh, D. Lucy, Uncertainty and sensitivity analysis of the basic reproduction number of a vaccinated epidemic model of influenza. Appl. Math. Model. 37(3), 903–915 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  75. A.F. Nindjin, M.A. Aziz-Alaoui, M. Cadivel, Analysis of a predator-prey model with modified Leslie–Gower and Holling-type II schemes with time delay. Nonlinear Anal. Real World Appl. 7(5), 1104–1118 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  76. S. Mondal, A. Maiti, G.P. Samanta, Effects of fear and additional food in a delayed predator-prey model. Biophys. Rev. Lett. 13(04), 157–177 (2018)

    Article  Google Scholar 

  77. S. Mondal, G.P. Samanta, Impact of fear on a predator-prey system with prey-dependent search rate in deterministic and stochastic environment. Nonlinear Dyn. 104(3), 2931–2959 (2021)

    Article  Google Scholar 

  78. L.N. Guin, R. Murmu, H. Baek, K.H. Kim, Dynamical analysis of a Beddington–DeAngelis interacting species system with prey harvesting. Math. Prob. Eng. 2020 (2020)

  79. L.N. Guin, P.K. Mandal, Spatiotemporal dynamics of reaction-diffusion models of interacting populations. Appl. Math. Model. 38(17–18), 4417–4427 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  80. L.N. Guin, S. Acharya, Dynamic behaviour of a reaction-diffusion predator-prey model with both refuge and harvesting. Nonlinear Dyn. 88(2), 1501–1533 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  81. R. Han, G. Mandal, L.N. Guin, S. Chakravarty, Dynamical response of a reaction–diffusion predator-prey system with cooperative hunting and prey refuge. J. Stat. Mech: Theory Exp. 2022(10), 103502 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  82. L.N. Guin, Existence of spatial patterns in a predator-prey model with self-and cross-diffusion. Appl. Math. Comput. 226, 320–335 (2014)

    MathSciNet  MATH  Google Scholar 

  83. L.N. Guin, B. Mondal, S. Chakravarty, Existence of spatiotemporal patterns in the reaction–diffusion predator-prey model incorporating prey refuge. Int. J. Biomath. 9(06), 1650085 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  84. H.I. Freedman, S.G. Ruan, Uniform persistence in functional differential equations. J. Differ. Equ. 115(1), 173–192 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

All the authors wish to express their sincere gratitude to the journal editors and the reviewers for the insightful criticism. The first author Mr. G. Mandal thankfully acknowledges the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for financial support in the form of a Junior Research Fellowship (File No.: 09/0202(16462)/2023-EMR-I Dated 14.03.2023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santabrata Chakravarty.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Appendices

Appendix

A Basic model analysis

This section deals with the basic preliminaries of the proposed model system (2.3), such as positivity and uniqueness, dissipativeness, uniformly boundedness, and permanence, which ensure that the model system is well-posed. Additionally, we have discussed the extinction scenario for both species involved in the system (2.3).

Theorem A.1

All solutions (u(t), v(t)) of the model system (2.3) exist uniquely and all of them are positive for all \(t \ge 0\).

Theorem A.2

The solutions of the proposed model system (2.3) satisfy the following;

$$\begin{aligned} \limsup _{t \rightarrow \infty } u(t) \le (\alpha -\beta ), \; \limsup _{t \rightarrow \infty } v(t) \le \frac{\epsilon -\delta }{\sigma }, \end{aligned}$$
(A.1)

provided \(\alpha > \beta\) and \(\epsilon > \delta\).

Remark A.3

Thus, from the inequalities (A.1) one may conclude that the proposed model system (2.3) is dissipative if the conditions \(\alpha > \beta\) and \(\epsilon > \delta\) hold good.

Theorem A.4

All solutions of the model system (2.3) along with their non-negative initial conditions, will ultimately lie within the region S defined by

$$\begin{aligned} S=\bigg \{(u, v) \in {\mathbb {R}}^{2}_{+}: 0 \le u(t)+v(t) \le W^{*}\bigg \} \end{aligned}$$

for all \(t \ge 0\), where \(W^{*}\) is specified in the proof section.

Theorem A.5

The proposed model system (2.3) is uniformly persistent if

$$\begin{aligned} \frac{\sigma \alpha }{\sigma + k(\epsilon -\delta )} > \beta +\frac{\gamma }{\rho }+\frac{\epsilon }{\eta }. \end{aligned}$$

Remark A.6

A model system is said to be permanent if it is dissipative as well as uniformly persistent [84]. Here, we have observed that the proposed model system (2.3) is dissipative through Theorem A.2 and uniformly persistent through Theorem A.5. Thus, the proposed model system (2.3) is permanent.

Theorem A.7

The prey species in the proposed model system (2.3) becomes extinct if \(\alpha < \beta\), whereas the predator population becomes extinct if \(\epsilon < \delta\).

Note:  The proof of all the theorems stated in Appendix is trivial, so we have omitted it for the sake of brevity.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, G., Das, S., Guin, L.N. et al. Dynamic response of a system of interactive species influenced by fear and Allee consequences. Eur. Phys. J. Plus 138, 661 (2023). https://doi.org/10.1140/epjp/s13360-023-04246-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04246-0

Navigation