Skip to main content
Log in

A new class of discrete modular memristors and application in chaotic systems

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

With the development of memristor, memristive chaotic systems have attracted attention, but many of them have divergence problems. To solve this problem, in this paper, a universal discrete modular memristor (DMM) model is proposed to overcome the problem of system divergence. Based on this model, a class of novel memristors are designed, and it is proved that they satisfy three fingerprint characteristics by theoretical verification and experimental simulation. Meanwhile, taking a one-dimensional (1D) chaotic map and a two-dimensional (2D) chaotic map as seed chaotic maps, two memristive chaotic maps are generated, and their dynamics are analyzed by phase diagram, Lyapunov exponent and complexity. Experimental results show that these memristive maps have good ergodicity, large chaotic range, hyperchaotic behavior and high complexity. In addition, these memristive maps are implemented on DSP platform, and applied in pseudorandom number generator (PRNG), which further validates their application potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. E. Lorenz, J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  ADS  Google Scholar 

  2. R.M. May, Nature 26(5560), 457 (1976)

    Google Scholar 

  3. J. Ma, J. Zhejiang Univ. Ser. A Appl. Phys. Eng. 24(2), 21 (2023)

    Google Scholar 

  4. N. Ichinose, Int. J. Bifurc. Chaos 31(1), 2130003 (2021)

    Article  Google Scholar 

  5. G. He, Z. Gao, P. Zhu et al., Neural Netw. 16(8), 1195–1200 (2003)

    Article  Google Scholar 

  6. W. Liu, K. Sun, Y. He et al., Int. J. Bifurc. Chaos 27(11), 1750171 (2017)

    Article  Google Scholar 

  7. C. Chen, K. Sun, Y. Peng et al., Eur. Phys. J. Plus 134(1), 410 (2019)

    Article  Google Scholar 

  8. Z. Li, C. Peng, L. Li et al., Nonlinear Dyn. 94, 1319–1333 (2018)

    Article  Google Scholar 

  9. S. Gong, C. Xing, S. Chen et al., IEEE Trans. Signal Process. 65(16), 4177–4192 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  10. Q. Gan, S. Yu, C. Li et al., Int. J. Circuit Theory Appl. 45(11), 1849–1872 (2016)

    Article  Google Scholar 

  11. J.P. Yeh, Chaos Solitons Fractals 32(3), 1178–1187 (2007)

    Article  ADS  Google Scholar 

  12. J.A. Lazzús, M. Rivera, C.H. López-Caraballo, Phys. Lett. A 380(11/12), 1164–1171 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  13. L. Lin, M. Shen, C. Chang et al., IEEE Trans. Signal Process. 60(8), 4426–4432 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  14. D. Li, M. Han, J. Wang et al., IEEE Trans. Neural Netw. Learn. Syst. 23(5), 787–799 (2012)

    Article  Google Scholar 

  15. F. Yuan, Y. Deng, Y. Li et al., Chaos 29(5), 053120 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  16. C. Wu, K. Sun, Y. Xiao, Eur. Phys. J. Spec. Top. 230, 2011–2020 (2021)

    Article  Google Scholar 

  17. W. Liu, K. Sun, S. He, Nonlinear Dyn. 89(4), 2521–2532 (2017)

    Article  Google Scholar 

  18. M. Yu, K. Sun, W. Liu et al., Chaos Solitons Fractals 106, 107–117 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. C. Wang, C. Fan, Q. Ding, Int. J. Bifurc. Chaos 28(7), 1850084 (2018)

    Article  Google Scholar 

  20. C. Fan, Q. Ding, Chaos Solitons Fractals 161, 112323 (2022)

    Article  Google Scholar 

  21. Z. Hua, Y. Zhang, Y. Zhou, IEEE Trans. Signal Process. 68, 1937–1949 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  22. L. Chua, IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  23. K. Eshraghian, O. Kavehei, K.R. Cho et al., Proc. IEEE 100(6), 1991–2007 (2012)

    Article  Google Scholar 

  24. Q. Lai, C. Lai, H. Zhang et al., Chaos Solitons Fractals 158, 112017 (2022)

    Article  Google Scholar 

  25. Y. Peng, Z. Lan, W. Li et al., Eur. Phys. J. Spec. Top. 231(16–17), 3187–3196 (2022)

    Article  Google Scholar 

  26. K. Qian, W. Feng, Z. Qin et al., Front. Phys. 10, 963795 (2022)

    Article  Google Scholar 

  27. M. Wang, H. Liu, M. Zhao, Eur. Phys. J. Spec. Top. 231(16–17), 3225–3237 (2022)

    Article  Google Scholar 

  28. S. Kong, C. Li, S. He et al., Chin. Phys. B 30(11), 110502–110502 (2021)

    Article  ADS  Google Scholar 

  29. Y. Peng, S. He, K. Sun, Nonlinear Dyn. 107(1), 1263–1275 (2021)

    Article  Google Scholar 

  30. Y. Deng, Y. Li, Nonlinear Dyn. 104(4), 4601–4614 (2021)

    Article  Google Scholar 

  31. Q. Li, H. Zeng, J. Li, Nonlinear Dyn. 79(4), 2295–2308 (2015)

    Article  Google Scholar 

  32. Y. Peng, S. He, K. Sun, AEU-Int. J. Electron. Commun. 129, 153539 (2020)

    Article  Google Scholar 

  33. S. He, K. Sun, Y. Peng et al., AIP Adv. 10(1), 015332 (2020)

    Article  ADS  Google Scholar 

  34. Y. Peng, S. He, K. Sun, Chaos Solitons Fractals 137, 109873 (2020)

    Article  MathSciNet  Google Scholar 

  35. M. Hénon, Commun. Math. Phys. 50(1), 69–77 (1976)

    Article  ADS  Google Scholar 

  36. Z. Liang, S. He, H. Wang et al., Eur. Phys. J. Plus 137(3), 309 (2022)

    Article  Google Scholar 

  37. H. Li, Z. Hua, H. Bao et al., IEEE Trans. Ind. Electron. 68(10), 9931–9940 (2021)

    Article  Google Scholar 

  38. B. Bao, K. Rong, H. Li et al., IEEE Trans. Circuits Syst. II Express Briefs 68(8), 2992–2996 (2021)

    Google Scholar 

  39. B. Bao, H. Li, H. Wu et al., Electron. Lett. 56(15), 769–770 (2020)

    Article  ADS  Google Scholar 

  40. H. Bao, Z. Hua, H. Li et al., IEEE Trans. Circuits Syst I Regular Pap. 68(11), 4534–4544 (2021)

    Article  Google Scholar 

  41. W. Liu, K. Sun, C. Zhu, Opt. Lasers Eng. 84, 26–36 (2016)

    Article  Google Scholar 

  42. Z. Hua, Y. Zhou, C. Pun et al., Inf. Sci. 297, 80–94 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 62071496, 62061008), and the Innovation Project of Graduate of Central South University (No. 2023ZZTS0397).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kehui Sun.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Liu, W., Wang, H. et al. A new class of discrete modular memristors and application in chaotic systems. Eur. Phys. J. Plus 138, 638 (2023). https://doi.org/10.1140/epjp/s13360-023-04242-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04242-4

Navigation