Skip to main content

Advertisement

Log in

Role of incentives on the dynamics of infectious diseases: implications from a mathematical model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In the present study, we assess the impact of incentives provided by the government on the dynamics of infectious diseases that spread due to the direct contacts of susceptibles with the infectives and also through the environmental contamination of those diseases. To this, we develop a mathematical model which comprises susceptible individuals, infected individuals, environmental contamination and the incentive provided by the government healthcare officials as dynamic variables. The proposed epidemic model is analyzed mathematically as well as numerically. System’s dynamics have been mainly studied about the disease-free and interior equilibrium points. We perform some sensitivity tests to find out model parameters that can have major roles in regulating the epidemic pattern. Our findings show that the disease could be effectively controlled by reducing the contact rate of susceptibles with the infected individuals and also their exposure to the environmental contamination. This could be possible by raising awareness among the public and using disinfectants of high quality for removing contaminants from the environment. These results suggest to increase the incentive amount in the areas facing rapid incline in the number of infected cases and the level of environmental contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availibility

All data generated or analyzed during this study are included in this article.

References

  1. M. Mandal, S. Jana, S.K. Nandi et al., A model based study on the dynamics of COVID-19: prediction and control. Chaos Solit. Fract. 136, 109889 (2022)

    Article  MathSciNet  Google Scholar 

  2. I. Ghosh, P.K. Tiwari, S. Mandal, M. Martcheva, J. Chattopadhyay, A mathematical study to control Guinea Worm Disease: a case study on Chad. J. Biol. Dyn. 12(1), 846–871 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. A.K. Srivastav, P.K. Tiwari, M. Ghosh, Modeling the impact of early case detection on dengue transmission deterministic vs stochastic. Stoch. Anal. Appl. 39(3), 434–455 (2021)

    MathSciNet  MATH  Google Scholar 

  4. X. Chang, M. Liu, Z. Jin, J. Wang, Studying on the impact of media coverage on the spread of COVID-19 in Hubei Province, China. Math. Biosci. Eng. 17(4), 3147–3159 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Dubey, U.S. Dubey, B. Dubey, Role of media and treatment on an SIR model. Nonlinear Anal. Model. Control 21, 185–200 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. A.K. Misra, R.K. Rai, Y. Takeuchi, Modeling the control of infectious diseases: effects of TV and social media advertisements. Math. Biosci. Eng. 15(6), 1315–1343 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. R.K. Rai, A.K. Misra, Y. Takeuchi, Modeling the impact of sanitation and awareness on the spread of infectious diseases. Math. Biosci. Eng. 16(2), 667–700 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. A.K. Misra, R.K. Rai, A mathematical model for the control of infectious diseases: effects of TV and radio advertisements. Int. J. Bifurcat. Chaos 28(03), 1850037 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. R.K. Rai, P.K. Tiwari, Y. Kang, A.K. Misra, Modeling the effect of literacy and social media advertisements on the dynamics of infectious diseases. Math. Biosci. Eng. 17(5), 5812–5848 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. P.K. Tiwari, R.K. Rai, A.K. Misra, J. Chattopadhyay, Dynamics of infectious diseases: local versus global awareness. Int. J. Bifurcat. Chaos 31(7), 2150102 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. A.K. Misra, A. Sharma, J.B. Shukla, Modeling and analysis of effects of awareness programs by media on the spread of infectious diseases. Math. Comp. Model. 53(5–6), 1221–1228 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. A.K. Misra, A. Sharma, J. Li, A mathematical model for control of vector borne diseases through media campaigns. Discrete Cont. Dyn. Syst. B. 18(7), 1909–1927 (2013)

    MathSciNet  MATH  Google Scholar 

  13. A. Sharma, A.K. Misra, Modeling the impact of awareness created by media campaigns on vaccination coverage in a variable population. J. Biol. Syst. 22(02), 249–270 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. A.K. Misra, A. Sharma, J.B. Shukla, Stability analysis and optimal control of an epidemic model with awareness programs by media. BioSystems 138, 53–62 (2015)

    Article  Google Scholar 

  15. H.F. Huo, S.R. Huang, X.Y. Wang, H. Xiang, Optimal control of a social epidemic model with media coverage. J. Biol. Dyn. 11(1), 226–243 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. I. Ghosh, P.K. Tiwari, S. Samanta et al., A simple SI\(-\)type model for HIV/AIDS with media and self-imposed psychological fear. Math. Biosci. 306, 160–169 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. P.K. Roy, S. Saha, F.A. Basir, Effect of awareness programs in controlling the disease HIV/AIDS: an optimal control theoretic approach. Adv. Differ. Equ. 2015(1), 1–8 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. D.K. Das, S. Khajanchi, T.K. Kar, The impact of the media awareness and optimal strategy on the prevalence of tuberculosis. Appl. Math. Comput. 366, 124732 (2020)

    MathSciNet  MATH  Google Scholar 

  19. A. Sharma, A.K. Misra, Backward bifurcation in a smoking cessation model with media campaigns. Appl. Math. Model. 39(3–4), 1087–1098 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. X. Chang, J. Wang, M. Liu, Y. Yang, Stability analysis and optimal control of an epidemic model with multidimensional information of media coverage on networks. Math. Meth. Appl. Sci. 46(6), 6787–6802 (2023)

    Article  MathSciNet  Google Scholar 

  21. R.K. Rai, S. Khajanchi, P.K. Tiwari, E. Venturino, A.K. Misra, Impact of social media advertisements on the transmission dynamics of COVID-19 pandemic in India. J. Appl. Math. Comput. 68, 19–44 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  22. P.K. Tiwari, R.K. Rai, S. Khajanchi, R.K. Gupta, A.K. Misra, Dynamics of coronavirus pandemic: Effects of community awareness and global information compaigns. Eur. Phys. J. Plus 136(10), 994 (2021)

    Article  Google Scholar 

  23. F.T. Kobe, P.R. Koya, Modeling and analysis of effect of awareness programs by media on the spread of COVID-19 pandemic disease. Am. J. Appl. Math. 8(4), 223–229 (2020)

    Google Scholar 

  24. A.K. Misra, A. Sharma, V. Singh, Effect of awareness programs in controlling the prevalence of an epidemic with time delay. J. Biol. Syst. 19(02), 389–402 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Samanta, Effects of awareness program and delay in the epidemic outbreak. Math. Meth. Appl. Sci. 40(5), 1679–1695 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Greenhalgh, S. Rana, S. Samanta et al., Awareness programs control infectious disease - multiple delay induced mathematical model. Appl. Math. Comput. 251, 539–563 (2015)

    MathSciNet  MATH  Google Scholar 

  27. A.K. Misra, R.K. Rai, P.K. Tiwari, M. Martcheva, Delay in budget allocation for vaccination and awareness induces chaos in an infectious disease model. J. Biol. Dyn. 15(1), 395–429 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. R.K. Rai, P.K. Tiwari, S. Khajanchi, Modeling the influence of vaccination coverage on the dynamics of COVID-19 pandemic with the effect of environmental contamination. Math. Meth. Appl. Sci. (2023). https://doi.org/10.1002/mma.9185

    Article  Google Scholar 

  29. H. Gaff, E. Schaefer, Optimal control applied to vaccination and treatment strategies for various epidemiological models. Math. Biosci. Eng. 6(3), 469–492 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. S.M. Garba, J.M. Lubuma, B. Tsanou, Modeling the transmission dynamics of the COVID-19 pandemic in South Africa. Math. Biosci. 328, 108441 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibrium for compartmental models of disease transmission. Math. Biosci. 180(1–2), 29–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. C. Castillo-Chavez, B. Song, Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1(2), 361–404 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. S.M. Blower, H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int. Stat. Rev. 62(2), 229–243 (1994)

    Article  MATH  Google Scholar 

  34. S. Marino, I.B. Hogue, C.J. Ray, D.E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254(1), 178–196 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. S. Samanta, S. Rana, A. Sharma, A.K. Misra, J. Chattopadhyay, Effect of awareness programs by media on the epidemic outbreaks: a mathematical model. Appl. Math. Comput. 219(12), 6965–6977 (2013)

    MathSciNet  MATH  Google Scholar 

  36. I. Ghosh, P.K. Tiwari, J. Chattopadhyay, Effect of active case finding on dengue control: Implications from a mathematical model. J. Theor. Biol. 464, 50–62 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. M. Martcheva, An introduction to mathematical epidemiology (Springer, New York, 2015)

    Book  MATH  Google Scholar 

  38. A. Abate, A. Tiwari, S. Sastry, Box invariance in biologically-inspired dynamical systems. Automatica 45(7), 1601–1610 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. V. Lakshmikantham, S. Leela, A.A. Martynyuk, Stability analysis of nonlinear systems (Springer, Cham, 1989)

    MATH  Google Scholar 

  40. S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos (Springer, New York, 1990)

    Book  MATH  Google Scholar 

  41. Y. Li, J.S. Muldowney, On Bendixson’s criterion. J. Differ. Equ. 106, 27–39 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. L. Perko, Differential equations and dynamical systems, 3rd edn. (Springer, Berlin, 2000)

    MATH  Google Scholar 

  43. P.K. Tiwari, S. Roy, G. Douglas, A.K. Misra, An optimal control model for the impact of Phoslock on the mitigation of algal biomass in lakes. J. Biol. Syst. 30(4), 945–984 (2022)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the associate editor and the reviewers whose comments and suggestions have helped the improvements of this paper.

Funding

The research work of Kalyan Kumar Pal is supported by University Grants Commission, Government of India, New Delhi, in the form of National Fellowship for Other Backward Classes [No. F. 40-2/June 2021 (CSIR NET Fellowships)]. The work of Yun Kang is partially supported by NSF-DMS (Award Numbers 1716802 and 2052820) and The James S. McDonnell Foundation (10.37717/220020472).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajanish Kumar Rai.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Ethical approval

The authors state that this research complies with ethical standards. This research does not involve either human participants or animals.

Appendices

Appendix A

Let \(X=[S,I,E_c,M]\), then system (1) can also be written as follows:

$$\begin{aligned} \dfrac{{\text {d}}X}{{\text {d}}t}& = {} EX+F, \end{aligned}$$

where \(F=[\Lambda ,0,0,0]^T\) is a nonnegative vector and

$$\begin{aligned} E=\begin{bmatrix} -E_{11} &{} \nu &{} 0 &{} 0 \\ E_{21} &{} -E_{22} &{} 0 &{} 0 \\ 0 &{} s_1 &{} -E_{33} &{} 0 \\ 0 &{} 0 &{} 0 &{} E_{44} \end{bmatrix} \end{aligned}$$

with

$$\begin{aligned}{} & {} E_{11}=\left( \beta -\beta _1\dfrac{k_1M}{p+k_1 M}\right) I+\psi _e\dfrac{E_c}{L+E_c}+d, \ E_{21}=\left( \beta -\beta _1\frac{k_1M}{p+k_1 M}\right) I+\psi _e\dfrac{E_c}{L+E_c },\\{} & {} E_{22}=\nu +\alpha +d, \ E_{33}=s_0+\eta \dfrac{(1-k_1)M}{q+(1-k_1)M}, \ E_{44}=r\left( 1-\dfrac{M}{K}\right) +\theta _1I+\theta _2E_c. \end{aligned}$$

Apparently, all the off-diagonal entries of matrix E(X) are nonnegative ensuring that the matrix is Metzler for all \(X\in {\mathbb {R}}_+^4\). Thus, system (1) is positively invariant in \({\mathbb {R}}_+^4\) [38], i.e., all the solution trajectories of the system starting from an initial state in \({\mathbb {R}}_+^4\) confine there for all \(t\ge 0\).

We obtain the following inequality from the second equation of system (3):

$$\begin{aligned} \frac{{\text {d}}N}{{\text {d}}t}\le \Lambda -dN\Rightarrow \frac{{\text {d}}}{{\text {d}}t}(Ne^{dt}) \le \Lambda e^{dt}. \end{aligned}$$

On integrating the above inequality from 0 to t, we get \(\displaystyle N(t)\le N_0e^{-dt}+\frac{\Lambda }{d}.\) This yields that \(\displaystyle \limsup _{t\rightarrow \infty } N(t)\le \dfrac{\Lambda }{d}.\) Thus, \(\displaystyle N(t)\le \dfrac{\Lambda }{d}\) for large \(t>0\). As \(I(t)\le N(t)\) at any time, so \(I(t) \le \dfrac{\Lambda }{d}\) for any large value of t.

Now, from the third equation of system (3), we have

$$\begin{aligned} \dfrac{{\text {d}}E_c}{{\text {d}}t}\le s_1 \dfrac{\Lambda }{d}-s_0 E_c. \end{aligned}$$

Using the theory of differential inequality [39], we get \(\displaystyle \limsup _{t\rightarrow \infty} E_c(t)\le \dfrac{s_1 \Lambda }{ds_0}.\) This implies that \(\displaystyle E_c(t)\le \dfrac{s_1 \Lambda }{ds_0}\) for large \(t>0\).

Again, the last equation of system (3) yields the following inequality:

$$\begin{aligned} \frac{{\text {d}}M}{{\text {d}}t}+\dfrac{r}{K}M^2\le \left[ r+\dfrac{\Lambda }{d}\left( \theta _1+\theta _2\frac{s_1}{s_0}\right) \right] M. \end{aligned}$$

By using the comparison theorem from [39], we get

$$\begin{aligned} \limsup _{t\rightarrow \infty }M(t)\le \dfrac{K}{r}\left[ r+\dfrac{\Lambda }{d}\left( \theta _1+\theta _2\dfrac{s_1}{s_0}\right) \right] . \end{aligned}$$

Thus, for any large value of t, we have

$$\begin{aligned} M(t)\le \dfrac{K}{r}\left[ r+\dfrac{\Lambda }{d}\left( \theta _1+\theta _2\dfrac{s_1}{s_0}\right) \right] . \end{aligned}$$

Thus, we find that the region \(\Omega\) is positively invariant, i.e., all the solutions of system (3) with initial conditions in \(\Omega\) remain therein for any large value of \(t>0\). Also, \(\Omega\) attracts all the solutions of system (3) with initial condition in \({\mathbb {R}}^4_+\). Hence, system (3) is mathematically well posed in the region \(\Omega\).

Appendix B

We find the Jacobian matrix of system (3) as \(J=[J_{ij}]_{4\times 4}\) with the following entries:

$$\begin{aligned} J_{11}& = {} \left( \beta -\beta _1\dfrac{k_1M}{p+k_1M}\right) (N-2I)-\psi _e\dfrac{E_c}{L+E_c}-(\nu +\alpha +d), \ J_{12}=\left( \beta -\beta _1\dfrac{k_1M}{p+k_1M}\right) I+\dfrac{\psi _e E_c}{L+E_c},\\ J_{13}& = {} \dfrac{L\psi _e}{(L+E_c)^2}(N-I), \ J_{14}=-\dfrac{p\beta _1k_1}{(p+k_1M)^2}(N-I)I,\ J_{33}=-s_0-\eta \dfrac{(1-k_1)M}{q+(1-k_1)M}, \\ J_{34}& = {} -\eta \dfrac{q(1-k_1)E_c}{(q+(1-k_1)M)^2}, \ J_{44}=r\left( 1-\dfrac{2M}{K}\right) +\theta _1I+\theta _2E_c, \ J_{31}=s_1, \ J_{21}=-\alpha , \ J_{22}=-d,\\ J_{23}& = {} J_{24}=J_{32}=J_{42}=0, \ J_{41}=\theta _1M, \ J_{43}=\theta _2M. \end{aligned}$$

On evaluating the Jacobian matrix J at the equilibrium \(E_1\), we get two eigenvalues as \(-d\) and r whereas the remaining two will be obtained by solving the following equation:

$$\begin{aligned} \xi ^2+\left( s_0+\nu +\alpha +d-\frac{\beta \Lambda}{d}\right) \xi +\left[ s_0(\nu +\alpha +d)-\frac{\Lambda }{d}\left( \beta s_0+\frac{s_1 \psi _e}{L}\right) \right] =0. \end{aligned}$$

Irrespective of signs of the reals parts of the roots of the above equation, the equilibrium point \(E_1\) is unstable as one eigenvalue, r, is always positive. Thus, we can say that having an equilibrium situation with susceptible only (no disease and no incentive) is practically impossible. Similarly, the equilibrium \(E_2\) with disease but no incentive is unconditionally unstable as one eigenvalue value of the Jacobian matrix J at this equilibrium point is \(r+\theta _1I_2+\theta _2E_{c2}\) (always positive) while the remaining three are roots of the following cubic equation:

$$\begin{aligned} \xi ^3+B_1\xi ^2+B_2\xi +B_3=0, \end{aligned}$$
(24)

where

$$\begin{aligned}{} & {} B_1=s_0+\nu +\alpha +2d-\dfrac{\beta }{d}\{\Lambda -(\alpha +2d)I_2\} +\dfrac{\psi _es_1I_2}{s_1I_2+LS_0},\\{} & {} B_2=s_0d+\alpha \beta I_2+ (\alpha -s_0-d)\dfrac{\psi _es_1I_2}{s_0L+s_1I_2} -\dfrac{s_1\psi _es^2_0L\{\Lambda -(\alpha +d)I_2\}}{d(s_0L+s_1I_2)^2}\\{} &\qquad\quad {} -(s_0+d)\left\{ \frac{\beta }{d}\{\Lambda -(\alpha +2d)I_2\}-(\nu +\alpha +d)\right\} ,\\{} & {} B_3=s_0\alpha \beta I_2+ (\alpha +d)\dfrac{s_0\psi _es_1I_2}{s_0L+s_1I_2} -\dfrac{ds_1\psi _es^2_0L\{\Lambda -(\alpha +d)I_2\}}{d(s_0L+s_1I_2)^2}\\{} &\qquad\quad {} -s_0d\left\{ \frac{\beta }{d}\{\Lambda -(\alpha +2d)I_2\}-(\nu +\alpha +d)\right\} . \end{aligned}$$

The unstable nature of the incentive-free equilibrium \(E_2\) indicates that having such equilibrium situation is a realistic scenario in impossible, i.e., in a region of epidemic outbreak, government always provides some incentives for the prevention of the disease. On computing the matrix J at the equilibrium \(E_3\), we obtain the two eigenvalues as \(-r\) and \(-d\) , whereas the other two are roots of the equation below:

$$\begin{aligned}{} & {} \xi ^2+\left[ s_0+\nu +\alpha +d+\frac{\eta (1-k_1)K}{q+(1-k_1)K} -\frac{\Lambda }{d}\left( \beta -\frac{\beta _1k_1K}{p+k_1K}\right) \right] \xi \nonumber \\{} & {} +(1-{\mathcal {R}}_0)(\nu +\alpha +d)\left( s_0+\frac{\eta (1-k_1)K}{q+(1-k_1)K}\right) =0. \end{aligned}$$
(25)

Clearly, if \({\mathcal {R}}_0<1\) and the condition (16) is satisfied, then the roots of above equation are either negative or have negative real parts leading to the stability of the equilibrium \(E_3\). Next, we evaluate the matrix J at the equilibrium \(E^*\) and obtain the associated characteristic equation as,

$$\begin{aligned} \xi ^4+A_1\xi ^3+A_2\xi ^2+A_3\xi +A_4=0, \end{aligned}$$
(26)

where

$$\begin{aligned} A_1& = {} d+\frac{r}{K}M^*-a_{11}-a_{33},\\ A_2& = {} \alpha a_{12}+a_{11}a_{33}+d\frac{r}{K}M^* -\left\{ (a_{11}+a_{33})\left( \frac{r}{K}M^*+d\right) +s_1a_{13}+\theta _1 a_{14}M^*\right\} ,\\ A_3& = {} \alpha a_{12}\frac{r}{K}M^*+\theta _1a_{14}a_{33}M^*+da_{11}a_{33}\\{} &\qquad {} -\left[ d(\theta _2a_{34}M^*+\theta _1a_{14}M^* +s_1a_{13})+\alpha a_{12}a_{33}+\theta _1a_{13}a_{34}M^* +s_1\theta _2a_{14}M^*+a_{11}a_{34}\theta _2M^*\right. \\{} &\qquad {} \left. +\frac{r}{K}M^*(s_1a_{13}+a_{11}a_{33}+da_{33}+da_{11})\right] ,\\ A_4& = {} \left[ \left( a_{33}\frac{r}{K}+\theta _2a_{34}\right) (da_{11}-\alpha a_{12})-d\left\{ a_{13}\left( s_1\frac{r}{K} +\theta _1a_{34}\right) +a_{14}(s_1\theta _2-\theta _1a_{33})\right\} \right] M^* \end{aligned}$$

with

$$\begin{aligned}{} & {} a_{11}=-\left( \beta -\beta _1\dfrac{k_1M^*}{p+k_1M^*}\right) I^* -\dfrac{\psi _eE_c^*}{L+E_c^*}\dfrac{N^*}{I^*}, \ a_{12} =(\nu +\alpha +d)\dfrac{I^*}{N^*-I^*},\\{} & {} a_{13}=\dfrac{\psi _eL}{(L+E_c^*)^2}(N^*-I^*), \ a_{14} =-\dfrac{\beta _1k_1p}{(p+k_1M^*)^2}(N^*-I^*)I^*, \ a_{21}=-\alpha , \ a_{22}=-d,\\{} & {} a_{23}=a_{24}=a_{32}=0, \ a_{31}=s_1, \ a_{33}=-s_1 \dfrac{I^*}{E_c^*}, \ a_{34}=-\dfrac{\eta q(1-k_1)E_c^*}{(q+(1-k_1)M^*)^2}, \ a_{41}=\theta _1M^*,\\{} & {} a_{42}=0, \ a_{43}=\theta _2M^*, \ a_{44}=-\dfrac{r}{K}M^*. \end{aligned}$$

The roots of equation (26) are either negative or have negative real parts if and only if all the inequalities in (17) hold; in view of the Routh-Hurwitz criterion [42], these conditions imply the local asymptotic stability of the equilibrium \(E^*\). Note that the equilibrium \(E^*\) will be no longer stable if any of the conditions in (17) does not hold.

Appendix C

Considering only the variables I and \(E_c\), we get the following subsystem of system (3):

$$\begin{aligned} \dfrac{{\text {d}}I}{{\text {d}}t}& = {} \left( \beta -\beta _1\dfrac{k_1M}{p+k_1M}\right) (N-I)I +\psi _e\dfrac{E_c}{L+E_c}(N-I)-(\nu +\alpha +d)I:=f_1,\\ \dfrac{{\text {d}}E_c}{{\text {d}}t}& = {} s_1I-s_0E_c-\eta \dfrac{(1-k_1)M}{q+(1-k_1)M}E_c:=f_2. \end{aligned}$$

Defining \(\displaystyle h(I,E_c)=\dfrac{1}{IE_c},\) we have \(\displaystyle \Delta _{E_3}(I,E_c)=\dfrac{\partial }{\partial I}(hf_1)+\dfrac{\partial }{\partial E_c}(hf_2).\) Obviously, \(h(I,E_c)>0\) for all \(I,E_c>0\). Thus,

$$\begin{aligned} \Delta _{E_3}(I,E_c)=\dfrac{\partial }{\partial I}(hf_1) +\dfrac{\partial }{\partial E_c}(hf_2)=-\left[ \dfrac{1}{E_c} \left( \beta -\beta _1\dfrac{k_1M}{p+k_1 M}\right) +\dfrac{\psi _e}{I^2}\dfrac{N}{L+E_c}+\dfrac{s_1}{E^2_c}\right] <0. \end{aligned}$$

Obviously, \(\Delta _{E_3}(I,E_c)\) does not change its sign and is also not identically zero in the positive quadrant of the \(I-E_c\) plane. Thus, according to the Bendixson–Dulac criterion [40], system (3) could not exhibit any limit cycle in the positive quadrant of the \(I-E_c\) plane. As the disease-free equilibrium \(E_3\) is locally asymptotically stable whenever \({\mathcal {R}}_0<1\), so it is globally asymptotically stable in the positive quadrant of the \(I-E_c\) plane for \({\mathcal {R}}_0<1\). In the same line, one can show that the disease-free equilibrium \(E_3\) of system (3) is globally asymptotically in the other planes also [40].

Appendix D

Corresponding to system (3), we consider the following positive definite function:

$$\begin{aligned} G=\left[ I-I^*-I^*\ln \left( \dfrac{I}{I^*}\right) \right] +\dfrac{1}{2}m_1(N-N^*)^2 +\dfrac{1}{2}m_2(E-E^*_c)^2+m_3\left[ M-M^*-M^*\ln \left( \dfrac{M}{M^*}\right) \right] , \end{aligned}$$

where \(m_1,m_2\) and \(m_3\) are some positive constants to be chosen later. On calculating the time derivative of the function G along the solutions of system (3), choosing \(\displaystyle m_1=\dfrac{1}{\alpha }\left( \beta -\beta _1\dfrac{k_1M^*}{p+k_1M^*}\right)\) and rearranging the terms, we get

$$\begin{aligned} \frac{{\text {d}}G}{{\text {d}}t}& = {} -\left[ \left( \beta -\beta _1\dfrac{k_1M^*}{p+k_1M^*}\right) +\dfrac{\psi _eE_cN}{(L+E^*_c)II^*}\right] (I-I^*)^2-\dfrac{d}{\alpha } \left( \beta -\beta _1\dfrac{k_1M^*}{p+k_1M^*}\right) (N-N^*)^2 \\ \vphantom{1_{1_{1_{1_{1_{1_{1}}}}}}}{} &\qquad {} -m_2\left( s_0+\eta \dfrac{(1-k_1)M^*}{q+(1-k_1)M^*}\right) (E_c-E^*_c)^2 -m_3\dfrac{r}{K}(M-M^*)^2+\dfrac{\psi _eE_c}{(L+E_c)I^*}(I-I^*)(N-N^*)\\{} &\qquad {} +\dfrac{\psi _eL(N^*-I^*)}{(L+E_c)(L+E_c^*)I^*}(I-I^*)(E_c-E^*_c)+m_2s_1(I-I^*)(E_c-E^*_c)\\{} &\qquad {} -\dfrac{\beta _1k_1p(N-I)}{(p+k_1M)(p+k_1M^*)}(I-I^*)(M-M^*)+m_3\theta _1(I-I^*)(E_c-E^*_c)\\{} &\qquad {} -m_2\left( \dfrac{\eta (1-k_1)qE_c}{(q+(1-k_1)M)(q+(1-k_1)M^*)}\right) (E_c-E^*_c)(M-M^*)+m_3\theta _2(M-M^*)(E_c-E^*_c). \end{aligned}$$

Notably, the derivative function \(\displaystyle \dfrac{{\text {d}}G}{{\text {d}}t}\) will be negative definite inside \(\Omega\) if the following inequalities are satisfied:

$$\begin{aligned} \left( \dfrac{\psi _es_1\Lambda }{dLs_0I^*}\right) ^2< & {} \dfrac{4}{5} \left( \dfrac{d}{\alpha }\right) \left( \beta -\beta _1\frac{k_1M^*}{p+k_1M^*}\right) ^2, \end{aligned}$$
(27)
$$\begin{aligned} \left( \frac{\psi _e(N^*-I^*)}{(L+E^*_c)I^*}\right) ^2< & {} \dfrac{m_2}{5} \left( s_0+\frac{\eta (1-k_1)M^*}{q+(1-k_1)M^*}\right) \left( \beta -\beta _1\frac{k_1M^*}{p+k_1M^*}\right) , \end{aligned}$$
(28)
$$\begin{aligned} m_2s_1^2< & {} \frac{1}{5}\left( s_0+\frac{\eta (1-k_1)M^*}{q+(1-k_1)M^*}\right) \left( \beta -\beta _1\frac{k_1M^*}{p+k_1M^*}\right) , \end{aligned}$$
(29)
$$\begin{aligned} \left( \frac{\beta _1k_1\Lambda }{d(p+k_1M^*)}\right) ^2< & {} \left( \frac{m_3r}{5K}\right) \left( \beta -\beta _1\frac{k_1M^*}{p+k_1M^*}\right) , \end{aligned}$$
(30)
$$\begin{aligned} m_3\theta ^2_1< & {} \frac{1}{5}\left( \frac{r}{K}\right) \left( \beta -\beta _1\frac{k_1M^*}{p+k_1M^*}\right) , \end{aligned}$$
(31)
$$\begin{aligned} m_2\left( \frac{\eta (1-k_1)s_1\Lambda }{ds_0(q+(1-k_1)M^*)}\right) ^2< & {} \frac{1}{4}m_3\left( \frac{r}{K}\right) \left( s_0+\eta \frac{(1-k_1)M^*}{q+(1-k_1)M^*}\right) , \end{aligned}$$
(32)
$$\begin{aligned} m_3\theta ^2_2< & {} \left( \frac{m_2}{4}\right) \left( \frac{r}{K}\right) \left( s_0+\eta \frac{(1-k_1)M^*}{q+(1-k_1)M^*}\right) . \end{aligned}$$
(33)

From inequalities (28) and (29), one can choose a positive value of \(m_2\) if inequality (19) holds. Also, from inequalities (30)–(33), one can get a positive value of \(m_3\) if the inequality (20) holds. Thus, one can conclude that \(\displaystyle \dfrac{{\text {d}}G}{{\text {d}}t}\) will be negative definite inside \(\Omega\) if inequalities (18)−(20) hold.

Appendix E

The second additive compound matrix associated with the matrix \(J_{E^*}\) is obtained as,

$$\begin{aligned} J_{E^*}^{[2]}=\begin{bmatrix} a_{11}+a_{22} &{} 0 &{} 0 &{} -a_{13} &{} -a_{14} &{} 0\\ 0 &{} a_{11}+a_{33} &{} a_{34} &{} a_{12} &{} 0 &{} -a_{14}\\ 0 &{} a_{43} &{} a_{11}+a_{44} &{} 0 &{} a_{12} &{} a_{13}\\ -a_{31} &{} a_{21} &{} 0 &{} a_{22}+a_{33} &{} a_{34} &{} 0\\ -a_{41} &{} 0 &{} a_{21} &{} a_{43} &{} a_{22}+a_{44} &{} 0\\ 0 &{} -a_{41} &{} a_{31} &{} 0 &{} 0 &{} a_{33}+a_{44} \end{bmatrix}. \end{aligned}$$

Define \(|Y|_\infty =\sup |Y_i|.\) The logarithmic norm \(\mu _\infty (J_{E^*}^{[2]})\) of the matrix \(J_{E^*}^{[2]}\) endowed with the vector norm \(|Y|_\infty\) is determined by the supremum of the following quantities:

$$\begin{aligned}{} & {} a_{11}+a_{22}+|a_{13}|+|a_{14}|, \ a_{11}+a_{33}+|a_{34}|+|a_{12}|+|a_{14}|, \ |a_{43}|+a_{11}+a_{44}+|a_{12}|+|a_{13}|,\\{} & {} |a_{31}|+|a_{21}|+a_{22}+a_{33}+|a_{34}|, \ |a_{41}|+|a_{21}|+|a_{43}|+a_{22}+a_{44}, \ |a_{41}|+|a_{31}|+a_{33}+a_{44}. \end{aligned}$$

Notably, (\(a_{11}+a_{22}+|a_{13}|+|a_{14}|)_{E^*}<0\) if

$$\begin{aligned} \dfrac{\psi _eL}{(L+E_c^*)^2}(N^*-I^*)+\dfrac{\beta _1k_1p}{(p+k_1M^*)^2}(N^*-I^*)I^* <\left( \beta -\beta _1\dfrac{k_1M^*}{p+k_1M^*}\right) I^*+\dfrac{\psi _eE_c^*}{L+E_c^*}\dfrac{N^*}{I^*}. \end{aligned}$$
(34)

Also, \((a_{11}+a_{33}+|a_{34}|+|a_{12}|+|a_{14}|)_{E^*}<0\) if

$$\begin{aligned}{} & {} \dfrac{\beta _1k_1p}{(p+k_1M^*)^2}(N^*-I^*)I^*+(\nu +\alpha +d)\dfrac{I^*}{N^*-I^*} +\dfrac{\beta _1k_1p}{(p+k_1M^*)^2}(N^*-I^*)I^*\nonumber \\{} & {} <\dfrac{\psi _eE_c^*}{L+E_c^*}\dfrac{N^*}{I^*} +\left( \beta -\beta _1\dfrac{k_1M^*}{p+k_1M^*}\right) I^*. \end{aligned}$$
(35)

Again, \((|a_{43}|+a_{11}+a_{44}+|a_{12}|+|a_{13}|)_{E^*}<0\) if

$$\begin{aligned}{} & {} \theta _2M^*+(\nu +\alpha +d)\dfrac{I^*}{N^*-I^*}+\dfrac{\psi _eL}{(L+E_c^*)^2}(N^*-I^*)\nonumber \\{} & {} <\left( \beta -\beta _1\dfrac{k_1M^*}{p+k_1M^*}\right) I^* +\dfrac{\psi _eE_c^*}{L+E_c^*}\dfrac{N^*}{I^*}+\dfrac{r}{K}M^*. \end{aligned}$$
(36)

Further, \((|a_{31}|+|a_{21}|+a_{22}+a_{33}+|a_{34}|)_{E^*}<0\) if

$$\begin{aligned} s_1+\alpha +\dfrac{\eta q(1-k_1)E_c^*}{(q+(1-k_1)M^*)^2}<d+s_1\dfrac{I^*}{E_c^*}. \end{aligned}$$
(37)

Furthermore, \((|a_{41}|+|a_{21}|+|a_{43}|+a_{22}+a_{44})_{E^*}<0\) if

$$\begin{aligned} \alpha +\theta _1M^*+\theta _2M^*<d+\dfrac{r}{K}M^*. \end{aligned}$$
(38)

Finally, (\(|a_{41}+|+|a_{31}|+a_{33}+a_{44})_{E^*}<0\) if

$$\begin{aligned} s_1+\theta _1M^*<s_1\dfrac{I^*}{E_c^*}+\dfrac{r}{K}M^*. \end{aligned}$$
(39)

Combining the inequalities (34)−(39), one can get the required condition (23).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, K.K., Rai, R.K., Tiwari, P.K. et al. Role of incentives on the dynamics of infectious diseases: implications from a mathematical model. Eur. Phys. J. Plus 138, 564 (2023). https://doi.org/10.1140/epjp/s13360-023-04163-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04163-2

Navigation