Skip to main content
Log in

Photon emission in the graphene under the action of a quasiconstant external electric field

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Following a nonperturbative formulation of strong-field QED developed in our earlier works, and using the Dirac model of the graphene, we construct a reduced QED\(_{3,2}\) to describe one species of the Dirac fermions in the graphene interacting with an external electric field and photons. On this base, we consider the photon emission in this model and construct closed formulas for the total probabilities. Using the derived formulas, we study probabilities for the photon emission by an electron and for the photon emission accompanying the vacuum instability in the quasiconstant electric field that acts in the graphene plane during the time interval T. We study angular and polarization distribution of the emission as well as emission characteristics in a high-frequency and low-frequency approximations. We analyze the applicability of the presented calculations to the graphene physics in laboratory conditions. In fact, we are talking about a possible observation of the Schwinger effect in these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility Statement

No data associated in the manuscript.

Code availability

Not applicable.

Notes

  1. We note that this diagram can cause non-vanishing contributions when appearing as a part of a higer order diagram; see Ref. [32].

References

  1. G.W. Semenoff, Condensed-matter simulation of a three-dimentional Anomaly. Phys. Rev. Lett. 53, 2449–2452 (1984)

    Article  ADS  Google Scholar 

  2. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007). https://doi.org/10.1038/nmat1849

    Article  ADS  Google Scholar 

  3. M.I. Katsnelson, K.S. Novoselov, Graphene: New bridge between condensed matter physics and quantum electrodynamics. Solid State Commun. 143, 3–13 (2007). https://doi.org/10.1016/j.ssc.2007.02.043

    Article  ADS  Google Scholar 

  4. V.P. Gusynin, S.G. Sharapov, J.P. Carbotte, AC conductivity of graphene: from tight-binding model to 2+1-dimensional quantum electrodynamics. Int. J. Mod. Phys. B 21, 4611–4658 (2007). https://doi.org/10.1142/S0217979207038022

    Article  ADS  MATH  Google Scholar 

  5. D.M. Gitman, Quantum processes in an intense electromagnetic field II. Translat. Sov. Phys. J. 19, 1314–1319 (1976)

    Article  Google Scholar 

  6. D.M. Gitman, Processes of arbitrary order in quantum electrodynamics with a pair-creating external field. J. Phys. A 10, 2007–2020 (1977)

    Article  ADS  Google Scholar 

  7. D.M. Gitman, S.P. Gavrilov, Quantum processes in an intensive electromagnetic field creating pairs III. Izw. VUZov Fizika 20, 94–99 (1977)

    Google Scholar 

  8. E.S. Fradkin, D.M. Gitman, S.M. Shvartsman, Quantum electrodynamics with unstable vacuum (Springer-Verlag, Berlin, 1991)

    Book  Google Scholar 

  9. S.P. Gavrilov, D.M. Gitman, Phys. Rev. D 93, 045002 (2016). https://doi.org/10.1103/PhysRevD.93.045002

    Article  ADS  MathSciNet  Google Scholar 

  10. S.P. Gavrilov, D.M. Gitman, Eur. Phys. J. C 80, 820 (2020). https://doi.org/10.1140/epjc/s10052-020-8337-4

    Article  ADS  Google Scholar 

  11. S.P. Gavrilov, D.M. Gitman, Vacuum instability in external fields. Phys. Rev. D 53, 7162–7175 (1996). https://doi.org/10.1103/PhysRevD.53.7162

    Article  ADS  Google Scholar 

  12. T.C. Adorno, S.P. Gavrilov, D.M. Gitman, Exactly solvable cases in QED with \(t\)-electric potential steps. Int. J. Mod. Phys. A 32, 1750105 (2017). https://doi.org/10.1142/S0217751X17501056

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. S.P. Gavrilov, D.M. Gitman, N. Yokomizo, Dirac fermions in strong electric field and quantum transport in graphene. Phys. Rev. D 86, 125022 (2012). https://doi.org/10.1103/PhysRevD.86.125022

    Article  ADS  Google Scholar 

  14. M. Mecklenburg, J. Woo, B.C. Regan, Tree-level electron-photon interactions in graphene. Phys. Rev. B 81, 245401 (2010). https://doi.org/10.1103/PhysRevB.81.245401

    Article  ADS  Google Scholar 

  15. M. Lewkowicz, H.C. Kao, B. Rosenstein, Signature of the Schwinger pair creation rate via radiation generated in graphene by a strong electric current. Phys. Rev. B 84, 035414 (2011). https://doi.org/10.1103/PhysRevB.84.035414

    Article  ADS  Google Scholar 

  16. N. Yokomizo, Radiation from electrons in graphene in strong electric field. Ann. Phys. 351, 166–199 (2014). https://doi.org/10.1016/j.aop.2014.08.024

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. I.V. Oladyshkin, S.B. Bodrov, Yu.A. Sergeev, A.I. Korytin, M.D. Tokman, A.N. Stepanov, Optical emission of graphene and electron-hole pair production induced by a strong terahertz field. Phys. Rev. B 96, 155401 (2017). https://doi.org/10.1103/PhysRevB.96.155401

    Article  ADS  Google Scholar 

  18. I.V. Oladyshkin, S.B. Bodrov, A.V. Korzhimanov, A.A. Murzanev, Yu.A. Sergeev, A.I. Korytin, M.D. Tokman, A.N. Stepanov, Polarized light emission from graphene induced by terahertz pulses. Phys. Rev. B 106, 205407 (2022). https://doi.org/10.1103/PhysRevB.106.205407

    Article  ADS  Google Scholar 

  19. A.I. Nikishov, Quantum processes in a constant electric field. Trans. Sover Phys. JETP 32, 690–694 (1971)

    ADS  Google Scholar 

  20. A. I. Nikishov, Problems of an external field in quantum electrodynamics. In: Quantum Electrodynamics of Phenomena in Intense Fields Proceedings of P.N. Lebedev Phys. Inst., 111 (Nauka, Moscow, 1979) 153-271

  21. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009). https://doi.org/10.1103/RevModPhys.81.109

    Article  ADS  Google Scholar 

  22. N.M.R. Peres, The transport properties of graphene: An introduction. Rev. Mod. Phys. 82, 2673–2700 (2010). https://doi.org/10.1103/RevModPhys.82.2673

    Article  ADS  Google Scholar 

  23. M.A.H. Vozmediano, M.I. Katsnelson, F. Guinea, Gauge fields in graphene. Phys. Rep. 496, 109–148 (2010). https://doi.org/10.1016/j.physrep.2010.07.003

    Article  ADS  MathSciNet  Google Scholar 

  24. G.E. Volovik, Topology of quantum vacuum. Lect. Notes in Phys. 870, 343–383 (2013). https://doi.org/10.48550/arXiv.1111.4627

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. O. Vafek, A. Vishwanath, Dirac Fermions in Solids: From High-Tc Cuprates and Graphene to Topological Insulators and Weyl Semimetals. Annu. Rev. Condens. Matter Phys. 5, 83–112 (2014). https://doi.org/10.1146/annurev-conmatphys-031113-133841

    Article  ADS  Google Scholar 

  26. D. Das Sarma, S. Adam, E.H. Hwang, E. Rossi, Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011). https://doi.org/10.1103/RevModPhys.83.407

    Article  ADS  Google Scholar 

  27. V.N. Kotov, B. Uchoa, V.M. Pereira, F. Guinea, A.H. Castro Neto, Rev. Mod. Phys. 84, 1067 (2012). https://doi.org/10.1103/RevModPhys.84.1067

    Article  ADS  Google Scholar 

  28. E. Barnes, E.H. Hwang, R. Throckmorton, S. Das Sarma, Effective field theory, three-loop perturbative expansion, and their experimental implications in graphene many-body effects. Phys. Rev. B 89, 235431 (2014). https://doi.org/10.1103/PhysRevB.89.235431

    Article  ADS  Google Scholar 

  29. M.O. Goerbig, Electronic properties of graphene in a strong magnetic field. Rev. Mod. Phys. 83, 1193–1243 (2011). https://doi.org/10.1103/RevModPhys.83.1193

    Article  ADS  Google Scholar 

  30. V.A. Miransky, I.A. Shovkovy, Quantum field theory in a magnetic field: From quantum chromodynamics to graphene and Dirac semimetals. Phys. Rep. 576, 1–209 (2015). https://doi.org/10.1016/j.physrep.2015.02.003

    Article  ADS  MATH  Google Scholar 

  31. M.I. Katsnelson, The physics of graphene, 2nd edn. (Cambridge University Press, Cambridge, 2020)

    Book  MATH  Google Scholar 

  32. H. Gies, F. Karbstein, An addendum to the Heisenberg-Euler effective action beyond one loop. JHEP 1703, 108 (2017). https://doi.org/10.1007/JHEP03(2017)108

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. M. Lewkowicz, B. Rosenstein, Dynamics of Particle-Hole Pair Creation in Graphene. Phys. Rev. Lett. 102, 106802 (2009). https://doi.org/10.1103/PhysRevLett.102.106802

    Article  ADS  Google Scholar 

  34. B. Rosenstein, M. Lewkowicz, H.C. Kao, Y. Korniyenko, Ballistic transport in graphene beyond linear response. Phys. Rev. B 81, 041416(R) (2010). https://doi.org/10.1103/PhysRevB.81.041416

    Article  ADS  Google Scholar 

  35. H.C. Kao, M. Lewkowicz, B. Rosenstein, Ballistic transport, chiral anomaly, and emergence of the neutral electron-hole plasma in graphene. Phys. Rev. B 82, 035406 (2010). https://doi.org/10.1103/PhysRevB.82.035406

    Article  ADS  Google Scholar 

  36. N. Vandecasteele, A. Barreiro, M. Lazzeri, A. Bachtold, F. Mauri, Current-voltage characteristics of graphene devices: Interplay between Zener-Klein tunneling and defects. Phys. Rev. B 82, 045416 (2010). https://doi.org/10.1103/PhysRevB.82.045416

    Article  ADS  Google Scholar 

  37. S.P. Gavrilov, D.M. Gitman, Consistency restrictions on maximal electric field strength in QFT. Phys. Rev. Lett. 101, 130403 (2008). https://doi.org/10.1103/PhysRevLett.101.130403

    Article  ADS  Google Scholar 

  38. Higher Transcendental functions, Bateman Manuscript Project, edited by A. Erdelyi et al., Vol. 1 (McGraw-Hill, New York, 1953)

  39. M.Z. Hasan, C.L. Kane, Topological insulators. Rev. Mod. Phys. 82, 3045–3068 (2010). https://doi.org/10.1103/RevModPhys.82.3045

    Article  ADS  Google Scholar 

  40. X.-L. Qi, S.-C. Zhang, Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–110 (2011). https://doi.org/10.1103/RevModPhys.83.1057

    Article  ADS  Google Scholar 

  41. V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii. Quantum electrodynamics - 2nd ed (Course of theoretical physics; Vol. 4), Pergamon Press: Oxford (1982)

  42. N.N. Bogolyubov, D.V. Shirkov, Introduction to the theory of quantized field 3-d Eng. ed., Wiley: New York, pp 1-12 (1980)

  43. I.A. Batalin, E.S. Fradkin, Sh.M. Shvartsman, Quantum electrodynamics in an external constant field. Nucl. Phys. B 258, 435–467 (1985). https://doi.org/10.1016/0550-3213(85)90621-2

    Article  ADS  MathSciNet  Google Scholar 

  44. Higher Transcendental functions, Bateman Manuscript Project. edited by A. Erdelyi et al. p 2 (McGraw-Hill, New York, 1953)

Download references

Acknowledgements

The work is supported by Russian Science Foundation (Grant no. 19-12-00042). Gitman is grateful to CNPq for continued support.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to S. P. Gavrilov.

Ethics declarations

Conflict of interest/Competing interests (check journal-specific guidelines for which heading to use)

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethics approval

Not applicable.

Appendices

Appendix A: Low-frequency approximation

Let us consider the probability densities, given by Eqs. (54), (55), and (57) in the range of low frequencies,

$$\begin{aligned} u_{0}\ll 1. \end{aligned}$$
(A1)

The ratio \(\left| u_{x}\right| /u_{0}\) , given by Eq. (66), is very small such that

$$\begin{aligned} \rho \approx u_{0}\ll 1. \end{aligned}$$
(A2)

In this limit, the behavior of the function \(I_{j^{\prime },j}(\rho )\), given by Eq. (71), can be found using properties of the confluent hypergeometric function \(\Psi\); see Eqs. (6.8(2)) - (6.8(4)) from Ref. [38]. The only functions \(I_{0,1}(\rho )\) and \(I_{1,0}(\rho )\) grow as \(\rho \rightarrow 0,\)

$$\begin{aligned} \left| I_{0,1}(\rho )\right| \sim \left| I_{1,0}(\rho )\right| \sim \rho ^{-1}. \end{aligned}$$
(A3)

Thus, the leading contribution to the amplitude \(M_{{\textbf{p}}^{\prime } {\textbf{p}}}^{+}\) given by Eq. (57) is due to the terms \(Y_{00}\approx \mathcal {J}_{0,0}(\rho )\sim \rho ^{-1}\) and \(Y_{11}\approx \mathcal {J} _{1,1}(\rho )\sim \rho ^{-1}\). The leading contribution to the amplitude \(M_{ {\textbf{p}}^{\prime }{\textbf{p}}}^{0}\) given by Eq. (57) is due to the terms \({\tilde{Y}}_{01}\approx \mathcal {{\tilde{J}}}_{0,1}(\rho )\sim \rho ^{-1}\) and \({\tilde{Y}}_{10}\approx \mathcal {{\tilde{J}}}_{1,0}(\rho )\sim \rho ^{-1}\). Therefore, the both modules squares amplitudes square grow proportionally to \(u_{0}^{-2}\),

$$\begin{aligned} \left. \left| M_{{\textbf{p}}^{\prime }{\textbf{p}}}^{0}\right| ^{2}\right| _{{\textbf{p}}^{\prime }=-{\textbf{p}}-\hbar {\textbf{k}}}\sim u_{0}^{-2},\;\left. \left| M_{{\textbf{p}}^{\prime }{\textbf{p}}}^{\pm }\right| ^{2}\right| _{{\textbf{p}}^{\prime }={\textbf{p}}-\hbar \textbf{ k}}\sim u_{0}^{-2}. \end{aligned}$$
(A4)

At the same time, the both probability densities (54) and (55) are divergent functions of the order \(u_{0}^{-1}\) as \(u_{0}\rightarrow 0\),

$$\begin{aligned} \frac{d\mathcal {P}\left( {\textbf{p}};\left. \textbf{K,}\vartheta \right| 0\right) }{du_{0}d\Omega }\sim \frac{\alpha }{\varepsilon }\left( \frac{v_{F} }{c}\right) ^{2}\frac{1}{u_{0}},\;\frac{d\mathcal {P}\left( \left. {\textbf{K}} ,\vartheta \right| \overset{\pm }{{\textbf{p}}}\right) }{du_{0}d\Omega } \sim \frac{\alpha }{\varepsilon }\left( \frac{v_{F}}{c}\right) ^{2}\frac{1}{ u_{0}}. \end{aligned}$$
(A5)

Such a behavior is an indication that the perturbative description of such soft photons, does not work. Namely for photons with frequencies less than a threshold frequency \(u_{0}^{\textrm{soft}}\), \(u_{0}\lesssim u_{0}^{\textrm{ soft}}\), in case when functions (A5) becomes of the order of unity. This makes it possible to evaluate the quantity \(u_{0}^{\textrm{soft}}\),

$$\begin{aligned} u_{0}^{\textrm{soft}}\sim \frac{\alpha }{\varepsilon }\left( \frac{v_{F}}{c} \right) ^{2}. \end{aligned}$$
(A6)

The number of such soft photons may be big enough. However, the only physically measurable quantity is the emitted energy. This energy is a negligibly small in the domain \(u_{0}\lesssim u_{0}^{\textrm{soft}}\). This case is called the infrared catastrophe whose nature is associated with the impossibility of separating a charged particle from its radiation field; see, e.g., section 98 in Ref. [41] and sections 46 and 50.3 in Ref. [42]. The case of the strong-electric field QED is considered in Ref. [43]. The infrared divergences of QED are essentially classical, and depend on the nature of the external current and on the experimental resolution. The infrared catastrophe is absent from the complete nonperturbative solution. Thus, one sees that the domain of the applicability of the perturbation theory is \(u_{0}>u_{0}^{\textrm{soft}}\) and a contribution from the domain \(u_{0}\lesssim u_{0}^{\textrm{soft}}\) is negligible.

In the case under consideration, the quantity \(u_{0}^{\textrm{soft}}\) is very small, \(u_{0}^{\textrm{soft}}\sim 10^{-7}\). It follows from estimation (98) and from restrictions on the parameter \(u_{0}^{\textrm{IR}}\) given by Eqs. (72) and (97) that in the realistic values of the parameters \(u_{0}^{\textrm{soft}}\ll u_{0}^{\textrm{IR}}\).

Appendix B: Fourier transformation of the product of two WPC functions

Integrals (64) can be reduced to a more simple form using the Nikishov’s representations given by Eq. (65)) for the hyperbolic coordinates \(\rho\) and \(\varphi\) (see Ref. [19, 20]). To demonstrate how it works, we note that the integrals represent particular cases of the more general integrals

$$\begin{aligned} J_{\Lambda ^{\prime }\Lambda }^{\zeta ^{\prime }\zeta }\left( \rho ,\varphi \right) =\int _{-\infty }^{+\infty }du\,f_{\Lambda ^{\prime }}^{\zeta ^{\prime }}(u-u_{x}/2)f_{\Lambda }^{\zeta }(u+u_{x}/2)e^{iu_{0}u}\,, \end{aligned}$$
(B7)

where \(f_{\Lambda }^{\zeta }(z)\) are WPCF’s satisfying the differential equation

$$\begin{aligned} \left( \frac{d^{2}}{dz^{2}}+z^{2}+\Lambda \right) f_{\Lambda }^{\zeta }(z)=0\,, \end{aligned}$$
(B8)

and \(u_{0}\) and \(u_{x}\), defined by Eq. (56), are:

$$\begin{aligned} u_{0}=\rho \cosh \varphi ,\;u_{x}=\rho \sinh \varphi \;\textrm{if} \;u_{0}^{2}>u_{x}^{2}. \end{aligned}$$
(B9)

The functions \(f_{\Lambda }^{\zeta }(z)\) with different values of \(\zeta =\pm\) are solutions of Eq. (B8) with some complex parameters \(\Lambda\). In particular,

$$\begin{aligned} J_{\Lambda ^{\prime }\Lambda }^{-+}\left( \rho ,\varphi \right)= & {} Y_{j^{\prime }j},\;\Lambda =\lambda +i\left( 2j-1\right) ,\;\Lambda ^{\prime }=\lambda ^{\prime }+i\left( 1-2j^{\prime }\right) , \nonumber \\ J_{\Lambda ^{\prime }\Lambda }^{--}\left( \rho ,\varphi \right)= & {} {\tilde{Y}} _{j^{\prime }j},\;\Lambda =\lambda +i\left( 1-2j\right) ,\;\Lambda ^{\prime }=\lambda ^{\prime }+i\left( 1-2j^{\prime }\right) . \end{aligned}$$
(B10)

Calculating the derivative of integral (B7) with respect to the hyperbolic angle \(\varphi\), we find:

$$\begin{aligned} \frac{\partial J_{\Lambda ^{\prime }\Lambda }^{\zeta ^{\prime }\zeta }\left( \rho ,\varphi \right) }{\partial \varphi }=\, & {} W+\int _{-\infty }^{+\infty }iu_{x}f_{\Lambda ^{\prime }}^{\zeta ^{\prime }}(u-u_{x}/2)f_{\Lambda }^{\zeta }(u+u_{x}/2)e^{iu_{0}u}du\ , \\ W= \,& {} \frac{u_{0}}{2}\int _{-\infty }^{+\infty }\left[ f_{\Lambda ^{\prime }}^{\zeta ^{\prime }}(u-u_{x}/2)\left. \frac{\partial \,f_{\Lambda }^{\zeta }\left( z\right) }{\partial z}\right| _{z=u+u_{x}/2}\right. \\{} & {} \left. -\,\left. \frac{\partial \,f_{\Lambda ^{\prime }}^{\zeta ^{\prime }}\left( z\right) }{\partial z}\right| _{z=u-u_{x}/2}f_{\Lambda }^{\zeta }(u+u_{x}/2)\right] e^{iu_{0}u}du\ ,\ u_{x}=\frac{\partial u_{0}}{\partial \varphi }\ ,\ u_{0}=\frac{\partial u_{x}}{\partial \varphi }\ . \end{aligned}$$

Integrating by parts and neglecting boundary terms, we can transform W to the following form:

$$\begin{aligned} W= & {} \frac{i}{2}\int _{-\infty }^{+\infty }\left[ f_{\Lambda ^{\prime }}^{\zeta ^{\prime }}(u-u_{x}/2)\left. \frac{\partial \,^{2}f_{\Lambda }^{\zeta }\left( z\right) }{\partial z^{2}}\right| _{z=u+u_{x}/2}\right. \nonumber \\{} & {} \left. -\,\left. \frac{\partial ^{2}\,f_{\Lambda ^{\prime }}^{\zeta ^{\prime }}\left( z\right) }{\partial z^{2}}\right| _{z=u-u_{x}/2}f_{\Lambda }^{\zeta }(u+u_{x}/2)\right] e^{iu_{0}u}du\ . \end{aligned}$$
(B11)

Using Eq. (B8) in integral (B11), we find:

$$\begin{aligned} \frac{\partial J_{\Lambda ^{\prime }\Lambda }^{\zeta ^{\prime }\zeta }\left( \rho ,\varphi \right) }{\partial \varphi }=\frac{i}{2}\left( \Lambda ^{\prime }-\Lambda \right) J_{\Lambda ^{\prime }\Lambda }^{\zeta ^{\prime }\zeta }\left( \rho ,\varphi \right) . \end{aligned}$$
(B12)

Solutions of this equation are:

$$\begin{aligned} J_{\Lambda ^{\prime }\Lambda }^{\zeta ^{\prime }\zeta }\left( \rho ,\varphi \right) =e^{\frac{i}{2}\left( \Lambda ^{\prime }-\Lambda \right) \varphi }J_{\Lambda ^{\prime }\Lambda }^{\zeta ^{\prime }\zeta }\left( \rho ,0\right) . \end{aligned}$$
(B13)

We use the notation \(J_{\Lambda ^{\prime }\Lambda }^{\zeta ^{\prime }\zeta }\left( \rho \right) =J_{\Lambda ^{\prime }\Lambda }^{\zeta ^{\prime }\zeta }\left( \rho ,0\right)\) in what follows. This function satisfies the differential Eq. (19)

$$\begin{aligned} \left[ \frac{d^{2}}{d\rho ^{2}}+\frac{1}{\rho }\frac{d}{d\rho }+\frac{\left( \Lambda -\Lambda ^{\prime }\right) ^{2}}{4\rho ^{2}}+\frac{\rho ^{2}}{4}- \frac{\Lambda +\Lambda ^{\prime }}{2}\right] J_{\Lambda ^{\prime }\Lambda }^{\zeta ^{\prime }\zeta }\left( \rho \right) =0\,. \end{aligned}$$
(B14)

This fact can be verified performing integrations by parts with account taken of Eq. (B8). The differential Eq. (B14) can be reduced to a confluent hypergeometric equation. Using two linearly independent solutions of such an equation, we find general solution of the differential Eq. (B14)

$$\begin{aligned}{} & {} J_{\Lambda ^{\prime }\Lambda }^{\zeta ^{\prime }\zeta }\left( \rho \right) =e^{-\eta /2}\left[ C_{1}\eta ^{i\beta }\Phi \left( \frac{i\Lambda }{2}+ \frac{1}{2},1+2i\beta ;\eta \right) +C_{2}\eta ^{-i\beta }\Phi \left( \frac{ i\Lambda ^{\prime }}{2}+\frac{1}{2},1-2i\beta ;\eta \right) \right] , \nonumber \\{} & {} \eta =-i\rho ^{2}/2,\;\beta =\left( \Lambda -\Lambda ^{\prime }\right) /4\;, \end{aligned}$$
(B15)

where the \(C_{1}\) and \(C_{2}\) are some undetermined coefficients, which must be fixed by appropriate boundary conditions, so that solution (B15) corresponds to the original integral (B7).

The confluent hypergeometric function \(\Phi \left( a,c;\eta \right)\) is entire in \(\eta\) and a, and is a meromorphic function of c. Note that \(\Phi \left( a,c;0\right) =1\). WPCF’s are entire functions of \(\Lambda\) and \(\Lambda ^{\prime }\). One can see that the integrals \(J_{\Lambda ^{\prime }\Lambda }^{\zeta ^{\prime }\zeta }\left( \rho \right)\) are entire functions of \(\Lambda\) and \(\Lambda ^{\prime }\) and meromorphic functions of \(\Lambda -\Lambda ^{\prime }\). Then one can find a boundary condition \(J_{\Lambda ^{\prime }\Lambda }^{\zeta ^{\prime }\zeta }\left( \rho \right)\) at \(\rho \rightarrow 0\) for some convenient values of j and \(j^{\prime }\). The remaining integrals \(J_{\Lambda ^{\prime }\Lambda }^{\zeta ^{\prime }\zeta }\left( \rho \right)\) can be obtained extending domains of \(\Lambda\) and \(\Lambda ^{\prime }\) by an analytic continuation.

Let us start with \({\tilde{J}}_{0,0}(\rho )\) given by Eq. (68). This integral can be represented as a solution of Eq. (B14) where \(\Lambda ^{\prime }=\lambda ^{\prime }+i\) and \(\Lambda =\lambda +i\). The coefficients \(C_{1}\) and \(C_{2}\) in Eq. (B15) can be fixed by a comparison with the \(\rho \rightarrow 0\) limit of integral (68). Let us first represent this integral as follows:

$$\begin{gathered} {\tilde{\mathcal{J}}}_{{0,0}} (\rho ) = F^{0} + F^{ + } + F^{ - } ,\;F^{ + } = \int_{0}^{\infty } {f^{ + } } \left( u \right)e^{{i\rho u}} du,\;F^{ - } = \int_{{ - \infty }}^{0} {f^{ - } } \left( u \right)e^{{i\rho u}} du, \hfill \\ F^{0} = \int_{0}^{\infty } f \left( u \right)\left[ {f\left( u \right) - f^{ + } \left( u \right)} \right]e^{{i\rho u}} du + \int_{{ - \infty }}^{0} f \left( u \right)\left[ {f\left( u \right) - f^{ - } \left( u \right)} \right]e^{{i\rho u}} du, \hfill \\ f\left( u \right) = D_{{ - \nu ^{\prime } }} [ - (1 + i)u]D_{{ - \nu }} [ - (1 + i)u], \hfill \\ \end{gathered}$$
(B16)

where \(f^{\pm }\left( u\right) =\left. f\left( u\right) \right| _{u\rightarrow \pm \infty }\). It can be seen that function (B15) is reduced to the oscillations \(C_{1}\eta ^{i\beta }+C_{2}\eta ^{-i\beta }\) as \(\rho \rightarrow 0\). Then \(\rho\)-independent terms do not contribute to the integrals \(F^{0}\) and \(F^{\pm }\). Taking into account that \(\lim _{\rho \rightarrow 0}F^{0}\) and \(\lim _{\rho \rightarrow 0}F^{-}\) do not depend on \(\rho ,\) one sees that the oscillation terms of \(F^{+}\) are only essential. Using relations (8.2.(7)) and (8.4.(1)) from Ref. [44], one finds:

$$\begin{aligned} \mathcal {{\tilde{J}}}_{0,0}(\rho )= & {} \sqrt{\pi }e^{i\pi \left( \nu +\nu ^{\prime }-1\right) /4}\left[ e^{i\pi \nu /2}\frac{\Gamma \left( \nu -\nu ^{\prime }\right) }{\Gamma \left( \nu \right) }\left( \frac{\rho }{\sqrt{2}} \right) ^{\nu ^{\prime }-\nu }\right. \nonumber \\{} & {} \left. +e^{i\pi \nu ^{\prime }/2}\frac{\Gamma \left( \nu ^{\prime }-\nu \right) }{\Gamma \left( \nu ^{\prime }\right) }\left( \frac{\rho }{\sqrt{2}} \right) ^{\nu -\nu ^{\prime }}\;\textrm{as}\;\rho \rightarrow 0\right] . \end{aligned}$$
(B17)

Comparing Eqs. (B15) and (B17), we obtain:

$$\begin{aligned} C_{1}=\sqrt{\pi }e^{i\pi \left( \nu +\nu ^{\prime }-1/2\right) /2}\frac{ \Gamma \left( \nu ^{\prime }-\nu \right) }{\Gamma \left( \nu ^{\prime }\right) },\;C_{2}=\sqrt{\pi }e^{i\pi \left( \nu +\nu ^{\prime }-1/2\right) /2}\frac{\Gamma \left( \nu -\nu ^{\prime }\right) }{\Gamma \left( \nu \right) }. \end{aligned}$$
(B18)

Using relation (6.5.(7)) from Ref. [38], one can represent function given by Eqs. (B15) and (B18) as

$$\begin{aligned} \mathcal {{\tilde{J}}}_{0,0}(\rho )=\sqrt{\pi }e^{i\pi \left( \nu +\nu ^{\prime }-1/2\right) /2}e^{-\eta /2}\eta ^{\left( \nu -\nu ^{\prime }\right) /2}\Psi \left( \nu ,1+\nu -\nu ^{\prime };\eta \right) , \end{aligned}$$
(B19)

where \(\Psi \left( \nu ,1+\nu -\nu ^{\prime };\eta \right)\) is the confluent hypergeometric function,

$$\begin{aligned} \Psi \left( \nu ,1+\nu -\nu ^{\prime };\eta \right)= & {} \frac{\Gamma \left( \nu ^{\prime }-\nu \right) }{\Gamma \left( \nu ^{\prime }\right) }\Phi \left( \nu ,1+\nu -\nu ^{\prime };\eta \right) \nonumber \\{} & {} +\frac{\Gamma \left( \nu -\nu ^{\prime }\right) }{\Gamma \left( \nu \right) }\eta ^{\nu ^{\prime }-\nu }\Phi \left( \nu ^{\prime },1+\nu ^{\prime }-\nu ;\eta \right) . \end{aligned}$$
(B20)

Using transformation \(\nu \rightarrow \nu +j\) and \(\nu ^{\prime }\rightarrow \nu ^{\prime }+j^{\prime }\) in Eq. (B19), one obtains the final form (70) for integral (68).

The integral \(\mathcal {J}_{j^{\prime },j}(\rho )\) given by Eq. (67) can be represented as the solution of Eq. (B14) where \(\Lambda ^{\prime }=\lambda ^{\prime }+i\left( 1-2j^{\prime }\right)\) and \(\Lambda =\lambda +i\left( 2j-1\right)\). Using relation (8.2.(6)) from Ref. [44], we transform one of the WPCF’s in Eq. (67) to obtain convenient representations:

$$\begin{aligned}{} & {} \mathcal {J}_{j^{\prime },j}(\rho )=\frac{\Gamma \left( \nu -j+1\right) }{ \sqrt{2\pi }}\left[ e^{i\pi \left( \nu -j\right) /2}\mathcal {{\tilde{J}}} _{j^{\prime },1-j}(\rho )+e^{-i\pi \left( \nu -j\right) /2}\mathcal {J} _{j^{\prime },1-j}^{\prime }(\rho )\right] \ , \end{aligned}$$
(B21)
$$\begin{aligned}{} & {} \mathcal {J}_{j^{\prime },1-j}^{\prime }(\rho )=\int _{-\infty }^{\infty }D_{-\nu ^{\prime }-j^{\prime }}[-(1+i)u]D_{-\nu +j-1}[(1+i)u]e^{i\rho u}du\ , \end{aligned}$$
(B22)

where \(\mathcal {{\tilde{J}}}_{j^{\prime },1-j}(\rho )\) is given by Eq. (70). The integral \(\mathcal {J}_{j^{\prime },1-j}^{\prime }(\rho )\) is represented by function (B15) where some coefficients \(C_{1}^{\prime }\) and \(C_{2}^{\prime }\) can be fixed by the comparison with \(\rho \rightarrow 0\) limit of the integral \(\mathcal {J}_{j^{\prime },1-j}^{\prime }(\rho )\).

Let us start with \(\mathcal {J}_{0,0}^{\prime }(\rho )\), where \(\Lambda ^{\prime }=\lambda ^{\prime }+i\) and \(\Lambda =\lambda +i\). In this case, it can be seen that function (B15) takes the form \(C_{1}^{\prime }\eta ^{i\beta }+C_{2}^{\prime }\eta ^{-i\beta }\) as \(\rho \rightarrow 0\). Hence all \(\rho\)-independent terms of \(\mathcal {J}_{0,0}^{\prime }(\rho )\), given by Eq. (B22), can be ignored at \(\rho \rightarrow 0\) limit and only the oscillation terms of following integrals

$$\begin{gathered} G^{ + } = \int_{0}^{\infty } {g^{ + } } \left( u \right)e^{{i\rho u}} du,\;F^{ - } = \int_{{ - \infty }}^{0} {g^{ - } } \left( u \right)e^{{i\rho u}} du,\; \hfill \\g^{ \pm } \left( u \right) = \left. {g\left( u \right)} \right|_{{u \to \pm \infty }} ,\; g\left( u \right) = D_{{ - \nu ^{\prime } }} [ - (1 + i)u]D_{{ - \nu }} [(1 + i)u] \hfill \\ \end{gathered}$$
(B23)

are essential. Using relations (8.2.(7)) and (8.4.(1)) from Ref. [44] , one finds:

$$\begin{aligned} \mathcal {J}_{0,0}^{\prime }(\rho )= & {} \sqrt{\pi }e^{i\pi \left( \nu ^{\prime }-\nu -1/2\right) /2}\left[ e^{i\pi \left( \nu -\nu ^{\prime }\right) /4} \frac{\Gamma \left( \nu -\nu ^{\prime }\right) }{\Gamma \left( \nu \right) } \left( \frac{\rho }{\sqrt{2}}\right) ^{\nu ^{\prime }-\nu }\right. \nonumber \\{} & {} \left. +e^{-i\pi \left( \nu -\nu ^{\prime }\right) /4}\frac{\Gamma \left( \nu ^{\prime }-\nu \right) }{\Gamma \left( \nu ^{\prime }\right) }\left( \frac{\rho }{\sqrt{2}}\right) ^{\nu -\nu ^{\prime }}\;\textrm{as}\;\rho \rightarrow 0\right] . \end{aligned}$$
(B24)

Comparing Eqs. (B15) and (B24) we obtain:

$$\begin{aligned} C_{1}^{\prime }=\sqrt{\pi }e^{i\pi \left( \nu ^{\prime }-\nu -1/2\right) /2} \frac{\Gamma \left( \nu ^{\prime }-\nu \right) }{\Gamma \left( \nu ^{\prime }\right) },\;C_{2}^{\prime }=\sqrt{\pi }e^{i\pi \left( \nu ^{\prime }-\nu -1/2\right) /2}\frac{\Gamma \left( \nu -\nu ^{\prime }\right) }{\Gamma \left( \nu \right) }. \end{aligned}$$
(B25)

Using relation (6.5.(7)) from Ref. [38], the function given by Eqs. (B15) and (B25) can be represented as:

$$\begin{aligned} \mathcal {J}_{0,0}^{\prime }(\rho )=\sqrt{\pi }e^{i\pi \left( \nu ^{\prime }-\nu -1/2\right) /2}e^{-\eta /2}\eta ^{\left( \nu -\nu ^{\prime }\right) /2}\Psi \left( \nu ,1+\nu -\nu ^{\prime };\eta \right) . \end{aligned}$$
(B26)

Using the transformations \(\nu \rightarrow \nu +1-j\) and \(\nu ^{\prime }\rightarrow \nu ^{\prime }+j^{\prime }\) in Eq. (B26), we obtain the following representation for integral (B22):

$$\begin{aligned} \mathcal {J}_{j^{\prime },1-j}^{\prime }(\rho )=e^{-i\pi \left( \nu -\nu ^{\prime }+1-j-j^{\prime }\right) /2}I_{j^{\prime },1-j}(\rho ), \end{aligned}$$
(B27)

where \(I_{j^{\prime },j}(\rho )\) is given by Eq. (71). Substituting representations (70) and (B27) into Eq. (B21) we find the final form (69).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilov, S.P., Gitman, D.M. Photon emission in the graphene under the action of a quasiconstant external electric field. Eur. Phys. J. Plus 138, 171 (2023). https://doi.org/10.1140/epjp/s13360-023-03786-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03786-9

Navigation