Skip to main content
Log in

Particle-shape illustration via the Hamilton–Crosser and Yamada–Ota hybrid nanofluid flow models past a stretching cylinder

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The current flow phenomena are described for the thermophysical behavior of nanoparticles due to the implementation of the Hamilton–Crosser hybrid nanofluid model through a stretching cylinder. Further, the Yamada–Ota hybrid nanofluid model is also described for cylindrical- and spherical-shaped nanoparticles. Interpretation of inertial drag with thermal radiation and the use of homogenous and heterogeneous chemical reaction enhance the study as well, and the utilization of hybrid nanofluid is crucial due to the recent requirement for industrial applications and in many fields of biological, engineering sciences, etc. Employing useful transformations, the governing equations are transformed into ordinary nonlinear equations, and further, these are solved numerically. The analysis of the various physical components that characterize the flow phenomena is obtained and presented through graphs. The behavior of these parameters is described briefly exhibiting their physical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Availability of data and material

No data are used.

Code availability

Not applicable.

Abbreviations

\(u,v\) :

Velocity components

\(T\) :

Temperature

\(\mu\) :

Dynamic viscosity

\(c_{p}\) :

Specific heat

\(k_{c}\) :

Homogenous chemical parameter

\(U_{w}\) :

Stretching velocity

\(q\) :

Electron charge

\(\delta\) :

Slip parameter

\(\varepsilon\) :

Thermal conductivity

\(m\) :

Hall parameter

\(k_{1}\) :

Chemical reaction parameter

\(\lambda\) :

Permeability parameter

\(\delta^{ * }\) :

Ratio of the diffusion parameter

\(D_{A} ,D_{B}\) :

Diffusion coefficients

\(\phi\) :

Nanoparticle volume fraction

\(k\) :

Thermal conductivity

\(Sc\) :

Schmidt number

\(a_{0} ,a,c\) :

Dimensional constant

\(E\) :

Electric field

\(\beta\) :

Hall factor

\(p\) :

Pressure

\(h_{f}\) :

Heat transfer coefficient

\(T_{w}\) :

Temperature of wall

\(\rho\) :

Density

\(Bi\) :

Biots number

\(L\) :

Slip coefficient

\(n\) :

Electron concentration per unit volume

\(F\) :

Base fluid

\(\omega\) :

Curvature parameter

\(S\) :

Interfacial area

\(k_{vs}\) :

Surface catalyze reaction

\(k_{s}\) :

Heterogeneous reaction parameter

\(\tau_{w}\) :

Shear stress

\(\lambda_{2}\) :

Thermal relaxation time

\(\Pr\) :

Prandtl number

\(\upsilon_{f}\) :

Kinematic viscosity

\(\sigma\) :

Electrical conductivity

\(hnf\) :

Hybrid nanofluid

\(nf\) :

Nanofluid

References

  1. S. Nadeem, N. Abbas, A.U. Khan, Characteristics of three dimensional stagnation point flow of hybrid nanofluid past a circular cylinder. Results Phys. 8, 829–835 (2018)

    Article  ADS  Google Scholar 

  2. H. Gul, M. Ramzan, J.D. Chung et al., Multiple slips impact in the MHD hybrid nanofluid flow with Cattaneo–Christov heat flux and autocatalytic chemical reaction. Sci. Rep. 1, 1–14 (2021)

    Google Scholar 

  3. J.D. Chung, M. Ramzan, H. Gul et al., Partially ionized hybrid nanofluid flow with thermal stratification. Mater. Res. Technol. 11, 1457–1468 (2021)

    Article  Google Scholar 

  4. P.K. Ratha, R.S. Tripathy, S.R. Mishra, Impact of variation of nanoparticle shape on free convective MHD water-based flow of Hamilton–Crosser model radiative nanofluids over a permeable surface. Heat Transf. 50(7), 6776–6794 (2021)

    Article  Google Scholar 

  5. S. Riasat, M. Ramzan, Y.L. Sun et al., Comparative analysis of Yamada-Ota and Xue models for hybrid nanofluid flow amid two concentric spinning disks with variable thermophysical characteristics. Case Stud. Therm. Eng. 26, 101039 (2021)

    Article  Google Scholar 

  6. M.K. Nayak, S. Shaw, M.I. Khan et al., Interfacial layer and shape effects of modified Hamilton’s Crosser model in entropy optimized Darcy–Forchheimer flow. Alexandria Eng. J. 4, 4067–4083 (2021)

    Article  Google Scholar 

  7. Abbas N, Malik M Y, Nadeem S, et al. I. M. On extended version of Yamada–Ota and Xue models of hybrid nanofluid on moving needle. The European Physical J Plus 2020; 2: 1–16.

  8. N. Abbas, S. Nadeem, M.Y. Malik, On extended version of Yamada-Ota and Xue models in micropolar fluid flow under the region of stagnation point. Physica A 542, 123512 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Ramzan, S. Riasat, H.E. AlOctaibi, MHD hybrid squeezing nanofluid flow with variable features and irreversibility analysis. Phys. Scr. 97(2), 025705 (2022)

    Article  ADS  Google Scholar 

  10. V. Puneeth, S. Manjunatha, J.K. Madhukesh, G.K. Ramesh, Three dimensional mixed convection flow of hybrid casson nanofluid past a non-linear stretching surface: a modified Buongiorno’s model aspects. Chaos, Solitons Fractals 152, 111428 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Ramzan, N. Shahmir, H.A.S. Ghazwani, K.S. Nisar, F.M. Alharbi, I.S. Yahia, Hydrodynamic and heat transfer analysis of dissimilar shaped nanoparticles-based hybrid nanofluids in a rOctating frame with convective boundary condition. Sci. Rep. 12(1), 1–17 (2022)

    Article  Google Scholar 

  12. T. Hayat, R. Ellahi, S. Asghar, Hall effects on unsteady flow due to non-coaxially rotating disk and a fluid at infinity. Chem. Eng. Commun. 8, 958–976 (2008)

    Article  Google Scholar 

  13. M. Kamran, B. Wiwatanapataphee, K. Vajravelu, Hall current, Newtonian heating and second-order slip effects on convective magneto-micropolar fluid flow over a sheet. Int. J. Mod. Phys. 9, 1850090 (2018)

    Article  Google Scholar 

  14. Z. Shah, M. Shutaywi, A. Dawar et al., Impact of Cattaneo–Christov heat flux on nonisothermal convective micropolar fluid flow in a hall MHD generator system. J. Mat. Res. Technol. 3, 5452–5462 (2020)

    Article  Google Scholar 

  15. M. Wakeel Ahmad, L.B. McCash, Z. Shah, R. Nawaz, Cattaneo–Christov heat flux model for second grade nanofluid flow with hall effect through entropy generation over stretchable rotating disk. Coatings 10, 610 (2020)

    Article  Google Scholar 

  16. M. Ramzan, S. Riasat, S. Kadry et al., Numerical analysis of carbon nanotube-based nanofluid unsteady flow amid two rotating disks with Hall current coatings and homogeneous–heterogeneous reactions. Coat 1, 48 (2020)

    Article  Google Scholar 

  17. M. Ramzan, H. Gul, J.D. Chung et al., Significance of Hall effect and Ion slip in a three-dimensional bioconvective Tangent hyperbolic nanofluid flow subject to Arrhenius activation energy. Sci. Rep. 1, 1–15 (2020)

    Google Scholar 

  18. Raja M A Z, Khan Z, Zuhra S, et al. Cattaneo–Christov heat flux model of 3D hall current involving biconvection nanofluidic flow with Darcy–Forchheimer law effect: backpropagation neural networks approach. Case Stud. Therm. Eng. 2021; 101168.

  19. I.S. Liu, On Fourier’s law of heat conduction. Cont. Mech. Thermodyn. 4, 301–305 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. C. Cattaneo, Sulla conduzione del calore. Atti Sem Mat Fis Univ Modena 3, 83–101 (1948)

    MathSciNet  MATH  Google Scholar 

  21. C.I. Christov, On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mech. Res. Commun. 4, 481–486 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Magodora, H. Mondal, P. Sibanda, Effect of Cattaneo-Christov heat flux on radiative hydromagnetic nanofluid flow between parallel plates using spectral quasilinearization method. J. Appl. Comput. Mech. 8(3), 865–875 (2022). https://doi.org/10.22055/jacm.2020.33298.2195

  23. Y.P. Lv, H. Gul, M. Ramzan, Chung, et al., Bioconvective Reiner-Rivlin nanofluid flow over a rOctating disk with Cattaneo-Christov flow heat flux and entropy generation analysis. Sci. Rep. 1, 1–18 (2021)

    Google Scholar 

  24. Zhang Y, Shahmir N, Ramzan M, et al. Upshot of melting heat transfer in a Von Karman rOctating flow of gold-silver/engine oil hybrid nanofluid with cattaneochristov heat flux. Case Stud. Therm. Eng. 2021; 101149.

  25. M. Ramzan, H. Gul, S. Kadry et al., Role of bioconvection in a three dimensional tangent hyperbolic partially ionized magnetized nanofluid flow with Cattaneo–Christov heat flux and activation energy. Int. Commun. Heat. Mass. Transf. 120, 104994 (2021)

    Article  Google Scholar 

  26. N. Abid, M. Ramzan, J.D. Chung et al., Comparative analysis of magnetized partially ionized copper, copper oxide–water and kerosene oil nanofluid flow with Cattaneo–Christov heat flux. Sci Rep 1, 1–14 (2020)

    Google Scholar 

  27. Gireesha B J, Shankaralingappa B M, Prasannakumar B C, et al. B. MHD flow and melting heat transfer of dusty Casson fluid over a stretching sheet with Cattaneo–Christov heat flux model. Int J Ambient Ene 2020; 1–9.

  28. O.D. Makinde, N. Sandeep, I.L. Animasaun et al., Numerical exploration of Cattaneo–Christov heat flux and mass transfer in magnetohydrodynamic flow over various geometries. In Defect Diffus. 374, 67–82 (2017)

    Article  Google Scholar 

  29. U. Khan, S. Ahmad, M. Ramzan et al., Numerical simulation of Darcy-Forchheimer 3D unsteady nanofluid flow comprising carbon nanotubes with Cattaneo–Christov heat flux and velocity and thermal slip conditions. Processes 10, 687 (2019)

    Google Scholar 

  30. P.K. Ratha, S. Mishra, R. Tripathy, P.K. Pattnaik, Analytical approach on the free convection of Buongiorno model nanofluid over a shrinking surface. Proc. Inst. Mech. Eng. Part N J. Nanomater. Nanoeng. Nanosyst. 7, 23977914221103984 (2022)

    Google Scholar 

  31. Mathur P, Mishra S, Pattnaik P K, Marangoni convection of γ-Al2O3-water/ethylene glycol nanofluids with the inclusion of nonlinear thermal radiation. Proc. Inst. Mech. Eng. Part N: J. Nanomater. Nanoeng. Nanosyst. 2022; 23977914221093839.

  32. P. Mathur, S.R. Mishra, Insight into the dynamics of micropolar fluid through annulus when the rate of entropy generation is significant. Heat Transf. 51(1), 753–765 (2022)

    Article  Google Scholar 

  33. P. Mathur, S.R. Mishra, S.D. Purohit, M. Bohra, Entropy generation in a micropolar fluid past an inclined channel with velocity slip and heat flux conditions: variation parameter method. Heat Transf. 50(7), 7425–7439 (2021)

    Article  Google Scholar 

  34. B.J. Gireesha, L. Anitha, Irreversibility analysis of micropolar nanofluid flow using Darcy–Forchheimer rule in an inclined microchannel with multiple slip effects. Heat Transf. 51(6), 5834–5856 (2022)

    Article  Google Scholar 

  35. P. Mathur, S.R. Mishra, P.K. Pattnaik, R.K. Dash, Characteristics of Darcy-Forchheimer drag coefficients and velocity slip on the flow of micropolar nanofluid. Heat Transf. 50(7), 6529–6547 (2021)

    Article  Google Scholar 

  36. X.Y. Gao, Y.J. Guo, W.R. Shan, Bilinear forms through the binary Bell polynomials, N solitons and Bäcklund transformations of the Boussinesq-Burgers system for the shallow water waves in a lake or near an ocean beach. Commun. Theor. Phys. 72(9), 095002 (2020)

    Article  ADS  MATH  Google Scholar 

  37. X.Y. Gao, Y.J. Guo, W.R. Shan, T.Y. Zhou, M. Wang, D.Y. Yang, In the Atmosphere and oceanic fluids: scaling transformations, bilinear forms, bäcklund transformations and solitons for a generalized variable-coefficient Korteweg-de Vries-modified Korteweg-de Vries equation. China Ocean Eng. 35(4), 518–530 (2021)

    Article  ADS  Google Scholar 

  38. X.Y. Gao, Y.J. Guo, W.R. Shan, Optical waves/modes in a multicomponent inhomogeneous optical fiber via a three-coupled variable-coefficient nonlinear Schrödinger system. Appl. Math. Lett. 120, 107161 (2021)

    Article  MATH  Google Scholar 

  39. X.Y. Gao, Y.J. Guo, W.R. Shan, Similarity reductions for a generalized (3+ 1)-dimensional variable-coefficient B-type Kadomtsev-Petviashvili equation in fluid dynamics. Chin. J. Phys. 77, 2707–2712 (2022)

    Article  MathSciNet  Google Scholar 

  40. X.Y. Gao, Y.J. Guo, W.R. Shan, Taking into consideration an extended coupled (2+ 1)-dimensional Burgers system in oceanography, acoustics and hydrodynamics. Chaos, Solitons Fractals 161, 112293 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  41. X.Y. Gao, Y.J. Guo, W.R. Shan, Regarding the shallow water in an ocean via a Whitham-Broer-Kaup-like system: hetero-Bäcklund transformations, bilinear forms and M solitons. Chaos, Solitons Fractals 162, 112486 (2022)

    Article  MATH  Google Scholar 

  42. X.T. Gao, B. Tian, Water-wave studies on a (2+ 1)-dimensional generalized variable-coefficient Boiti–Leon–Pempinelli system. Appl. Math. Lett. 128, 107858 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  43. Z. Tian-Yu, B. Tian, Y.-Q. Chen, Y. Shen, Painlevé analysis, auto-Bäcklund transformation and analytic solutions of a (2+1)-dimensional generalized Burgers system with the variable coefficients in a fluid. Nonlinear Dyn. 108(3), 2417–2428 (2022)

    Article  Google Scholar 

  44. Y. Shen, B. Tian, Bilinear auto-Bäcklund transformations and soliton solutions of a (3+ 1)-dimensional generalized nonlinear evolution equation for the shallow water waves. Appl. Math. Lett. 122, 107301 (2021)

    Article  MATH  Google Scholar 

  45. M.A. Chaudhary, J.H. Merkin, A simple isothermal model for homogeneous-heterogeneous reactions in boundary-layer flow I Equal diffusivities. Fluid Dyn. Res. 6, 311 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. H.A. Attia, A.L. Aboul-Hassan, Effect of Hall current on the unsteady MHD flow due to a Rotating disk with uniform suction or injection. Appl. Math. Modell. 12, 1089–1098 (2001)

    Article  MATH  Google Scholar 

  47. S. Mohammadmahdi, A.R. Miroliaei, Numerical simulation of effect of non-spherical particle shape and bed size on hydrodynamics of packed beds. J. Particle Sci. Technol. 3(3), 133–143 (2017)

    Google Scholar 

  48. Hussain A, Sarwar L, Rehman A, Akbar S, Gamaoun F, Coban H.H, Almaliki A.H, Alqurashi M.S. Heat Transfer Analysis and Effects of (Silver and Gold) Nanoparticles on Blood Flow inside Arterial Stenosis Flow inside Arterial Stenosis, Appl. Sci. 12, 1601 (2022)

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have equally contributed to complete the manuscript, i.e., PKR has formulated the problem and verified the problem statement, completed the introduction section, checked the similarity with grammar; SRM has computed and simulated the numerical results; and finally, RST has completed the draft with results and discussion section and checked the overall.

Corresponding author

Correspondence to S. R. Mishra.

Ethics declarations

Conflict of interest

There is no conflict of interest to publish our paper in your esteemed journal.

Ethical approval

The entire work is the original work of the authors.

Consent to participate

Not applicable.

Consent for publication

All the authors have given their consent to publish the paper.

Additional information

The original article has been revised to correct reference 22 to: Magodora, M., Mondal, H., Sibanda, P. Effect of Cattaneo-Christov Heat Flux on Radiative ‎Hydromagnetic Nanofluid Flow between Parallel Plates using ‎Spectral Quasilinearization Method. Journal of Applied and Computational Mechanics, 2022; 8(3): 865-875. doi: 10.22055/jacm.2020.33298.2195.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratha, P.K., Tripathy, R.S. & Mishra, S.R. Particle-shape illustration via the Hamilton–Crosser and Yamada–Ota hybrid nanofluid flow models past a stretching cylinder. Eur. Phys. J. Plus 138, 183 (2023). https://doi.org/10.1140/epjp/s13360-023-03752-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03752-5

Navigation