Skip to main content
Log in

Predicting of electrical conductivity for graphene-filled products by tunneling mechanism and interphase piece to enhance the performance of breast cancer biosensors

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A small number of authors have focused on the theoretical investigation of electrical conductivity for polymer/graphene systems, in spite of more experiment studies in this field. Here, a model is developed and evaluated for conductivity of graphene system based on the roles of tunneling mechanism and interphase pieces. Also, an equation is expressed for tunneling size assuming the interphase pieces. The productions of new model are connected to the experimented numbers of some nanocomposites. In addition, the tunneling size is calculated at unalike filler amounts for the examples. The stimuli of different factors on the tunneling size and nanocomposite’s conductivity are also studied using the developed equations. The outputs of new model show respectable matching with the experimented values. The dimensions of graphene and interphase layer significantly affect the tunneling size and nanocomposite’s conductivity. The developed equations reasonably predict that small tunneling size and high conductivity are obtained by high graphene amount, thin and large nanosheets besides a thick interphase. Thinner nanosheets (t < 2 nm) produce the tunneling size of about 0, while t = 5 nm and graphene diameter (D) of 0.5 μm increase the tunneling size to 18 nm. Also, t = 1 nm and D > 1 μm produce the conductivity of 0.9 S/m, while t > 4.5 nm and D < 1 μm cause an insulated sample. The contributions of all factors to the tunneling size and conductivity are discussed. The developed model is beneficial to enhance the performance of breast cancer biosensors, since the electrical conductivity plays a main role in the efficiency of biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

This manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are available from the corresponding author upon reasonable request.]

References

  1. A. Radhi, D. Mohamad, F.S.A. Rahman, A.M. Abdullah, H. Hasan, J. Mater. Res. Technol. 11, 1290–1307 (2021)

    Article  Google Scholar 

  2. M. Pagnola, F. Morales, P. Tancredi, L. Socolovsky, JOM 73, 2471–2478 (2021)

    Article  ADS  Google Scholar 

  3. M. Keshvardoostchokami, F. Piri, V. Jafarian, A. Zamani, JOM 72, 4477–4485 (2020)

    Article  ADS  Google Scholar 

  4. M. Alimohammadian, B. Sohrabi, Sci. Rep. 10, 1–9 (2020)

    Article  Google Scholar 

  5. M.S. Alborzi, A. Rajabpour, Eur. Phys. J. Plus 136, 959 (2021)

    Article  Google Scholar 

  6. R. Salmani, R. Gholami, R. Ansari, M. Fakhraie, Eur. Phys. J. Plus 136, 1–19 (2021)

    Article  Google Scholar 

  7. M. Mehrpooya, F. Valizadeh, R. Askarimoghadam, S. Sadeghi, F. Pourfayaz, S.A. Mousavi, Eur. Phys. J. Plus 135, 1–17 (2020)

    Article  Google Scholar 

  8. A. Safamanesh, S.M. Mousavi, H. Khosravi, E. Tohidlou, Polym. Compos. 42, 608–617 (2021)

    Article  Google Scholar 

  9. V. de Oliveira-Aguiar, V.J.R.R. Pita, Md.F.V. Marques, I.T. Soares, E.H.M. Ferreira, M.S. Oliveira, S.N. Monteiro, J. Mater. Res. Technol. 11, 1932–1941 (2021)

    Article  Google Scholar 

  10. A. Khosrozadeh, R. Rasuli, H. Hamzeloopak, Y. Abedini, Sci. Rep. 11, 1–11 (2021)

    Article  Google Scholar 

  11. M. Haghgoo, R. Ansari, M. Hassanzadeh-Aghdam, Eur. Phys. J. Plus 136, 1–20 (2021)

    Article  Google Scholar 

  12. S.-H. Kim, Y. Zhang, J.-H. Lee, S.-Y. Lee, Y.-H. Kim, K.Y. Rhee, S.-J. Park, Nanotechnol. Rev. 10, 1827–1837 (2021)

    Article  Google Scholar 

  13. S. Sagadevan, M.M. Shahid, Z. Yiqiang, W.-C. Oh, T. Soga, J.A. Lett, S.F. Alshahateet, I. Fatimah, A. Waqar, S. Paiman, Nanotechnol. Rev. 10, 605–635 (2021)

    Article  Google Scholar 

  14. R. Moradi-Dastjerdi, K. Behdinan, Polym. Compos. 42, 5763–5773 (2021)

    Article  Google Scholar 

  15. M.M. Haidari, H. Kim, J.H. Kim, M. Park, H. Lee, J.S. Choi, Sci. Rep. 10, 1–7 (2020)

    Article  Google Scholar 

  16. R. Ansari, R. Hassani, E. Hasrati, H. Rouhi, Eur. Phys. J. Plus 136, 1–29 (2021)

    Article  Google Scholar 

  17. B. Thomas, H.J. Maria, G. George, S. Thomas, N. Unnikrishnan, K. Joseph, Compos. B Eng. 175, 107174 (2019)

    Article  Google Scholar 

  18. M. Cobos, B. González, M.J. Fernández, M.D. Fernández, J. Appl. Polym. Sci. 134, 45092 (2017)

    Article  Google Scholar 

  19. M.J. Azizli, S. Rezaeinia, K. Rezaeeparto, M. Mokhtary, F. Askari, RSC Adv. 10, 11777–11790 (2020)

    Article  ADS  Google Scholar 

  20. M. Ahmed, A. Menazea, S. Mansour, R. Al-Wafi, J. Market. Res. 9, 11629–11640 (2020)

    Google Scholar 

  21. N.E. Eltayeb, A. Khan, J. Market. Res. 9, 10459–10467 (2020)

    Google Scholar 

  22. M.W. Ahmad, B. Dey, A.K.A. Al Saidi, A. Choudhury, Polymer Composites 41, 4104–4116 (2020)

    Article  Google Scholar 

  23. A. Rostami, M.I. Moosavi, J. Appl. Polym. Sci. 137, 48520 (2020)

    Article  Google Scholar 

  24. A. Rostami, H. Nazockdast, M. Karimi, RSC Adv. 6, 49747–49759 (2016)

    Article  ADS  Google Scholar 

  25. A. Rostami, M. Vahdati, Y. Alimoradi, M. Karimi, H. Nazockdast, Polymer 134, 143–154 (2018)

    Article  Google Scholar 

  26. Z. Rahimzadeh, S.M. Naghib, E. Askari, F. Molaabasi, A. Sadr, Y. Zare, M. Afsharpad, K.Y. Rhee, Nanotechnol. Rev. 10, 744–753 (2021)

    Article  Google Scholar 

  27. N.H. Md Said, W.W. Liu, C.S. Khe, C.W. Lai, N.N. Zulkepli, A. Aziz, Polymer Compos. 42, 1075–1108 (2021)

    Article  Google Scholar 

  28. M. Martin-Gallego, M. Bernal, M. Hernandez, R. Verdejo, M. Lopez-Manchado, Eur. Polymer J. 49, 1347–1353 (2013)

    Article  Google Scholar 

  29. C. Gao, S. Zhang, F. Wang, B. Wen, C. Han, Y. Ding, M. Yang, ACS Appl. Mater. Interfaces. 6, 12252–12260 (2014)

    Article  Google Scholar 

  30. H.-B. Zhang, W.-G. Zheng, Q. Yan, Y. Yang, J.-W. Wang, Z.-H. Lu, G.-Y. Ji, Z.-Z. Yu, Polymer 51, 1191–1196 (2010)

    Article  Google Scholar 

  31. J. Du, L. Zhao, Y. Zeng, L. Zhang, F. Li, P. Liu, C. Liu, Carbon 49, 1094–1100 (2011)

    Article  Google Scholar 

  32. Y. Zare, H. Garmabi, K.Y. Rhee, Compos. B Eng. 144, 1–10 (2018)

    Article  Google Scholar 

  33. Y. Zare, K.Y. Rhee, Compos. B Eng. 156, 100–107 (2019)

    Article  Google Scholar 

  34. F. Kazemi, Z. Mohammadpour, S.M. Naghib, Y. Zare, K.Y. Rhee, J. Market. Res. 15, 1777–1788 (2021)

    Google Scholar 

  35. F. Sadeghi, S. Ajori, R. Ansari, Eur. Phys. J. Plus 135, 553 (2020)

    Article  Google Scholar 

  36. L. He, S.C. Tjong, Nanoscale Res. Lett. 8, 132 (2013)

    Article  ADS  Google Scholar 

  37. B.S. Tk, A.B. Nair, B.T. Abraham, P.S. Beegum, E.T. Thachil, Polymer 55, 3614–3627 (2014)

    Article  Google Scholar 

  38. Y. Lan, H. Liu, X. Cao, S. Zhao, K. Dai, X. Yan, G. Zheng, C. Liu, C. Shen, Z. Guo, Polymer 97, 11–19 (2016)

    Article  Google Scholar 

  39. Z. Tu, J. Wang, C. Yu, H. Xiao, T. Jiang, Y. Yang, D. Shi, Y.-W. Mai, R.K. Li, Compos. Sci. Technol. 134, 49–56 (2016)

    Article  Google Scholar 

  40. Y. Zare, K.Y. Rhee, Polym. Compos. 40, 4135–4141 (2019)

    Article  Google Scholar 

  41. Y. Zare, K.Y. Rhee, Appl. Clay Sci. 137, 176–182 (2017)

    Article  Google Scholar 

  42. Y. Zare, H. Garmabi, Compos. B Eng. 75, 29–35 (2015)

    Article  Google Scholar 

  43. Y. Zare, H. Garmabi, Appl. Surf. Sci. 321, 219–225 (2014)

    Article  ADS  Google Scholar 

  44. S.S. Taheri, M.M.S. Fakhrabadi, Comput. Mater. Sci. 201, 110910 (2022)

    Article  Google Scholar 

  45. M. Taheri, F. Ebrahimi, Eur. Phys. J. Plus 135, 1–19 (2020)

    Article  Google Scholar 

  46. K. Baek, H. Shin, M. Cho, Compos. Sci. Technol. 203, 108572 (2021)

    Article  Google Scholar 

  47. A.J. Power, I.N. Remediakis, V. Harmandaris, Polymers 13, 541 (2021)

    Article  Google Scholar 

  48. Y. Zare, J. Colloid Interface Sci. 467, 165–169 (2016)

    Article  ADS  Google Scholar 

  49. Y. Zare, H. Garmabi, Polym. Rev. 54, 377–400 (2014)

    Article  Google Scholar 

  50. Y. Zare, K.Y. Rhee, Compos. A Appl. Sci. Manuf. 102, 137–144 (2017)

    Article  Google Scholar 

  51. Y. Zare, J. Colloid Interface Sci. 471, 89–93 (2016)

    Article  ADS  Google Scholar 

  52. Y. Zare, J. Colloid Interface Sci. 486, 249–254 (2017)

    Article  ADS  Google Scholar 

  53. R. Qiao, L.C. Brinson, Compos. Sci. Technol. 69, 491–499 (2009)

    Article  Google Scholar 

  54. Y. Zare, K.Y. Rhee, J. Market. Res. 15, 5343–5352 (2021)

    Google Scholar 

  55. A. Mohammadpour-Haratbar, Y. Zare, K.Y. Rhee, J. Market. Res. 18, 4894–4902 (2022)

    Google Scholar 

  56. Y. Zare, K.Y. Rhee, JOM 71, 3980–3988 (2019)

    Article  Google Scholar 

  57. Y. Zare, K. Rhee, Phys. Mesomech. 21, 351–357 (2018)

    Article  Google Scholar 

  58. Y. Zare, K.Y. Rhee, Eur. Phys. J. Plus 137, 1–16 (2022)

    Article  Google Scholar 

  59. Y. Zare, K.Y. Rhee, Eur. Phys. J. Plus 136, 852 (2021)

    Article  Google Scholar 

  60. Y. Zare, K.Y. Rhee, Ind. Eng. Chem. Res. 56, 9107–9115 (2017)

    Article  Google Scholar 

  61. S. Maiti, S. Suin, N.K. Shrivastava, B. Khatua, J. Appl. Polym. Sci. 130, 543–553 (2013)

    Article  Google Scholar 

  62. G. Ambrosetti, C. Grimaldi, I. Balberg, T. Maeder, A. Danani, P. Ryser, Phys. Rev. B 81, 155434 (2010)

    Article  ADS  Google Scholar 

  63. N. Ryvkina, I. Tchmutin, J. Vilčáková, M. Pelíšková, P. Sáha, Synth. Met. 148, 141–146 (2005)

    Article  Google Scholar 

  64. Y.G. Yanovsky, G. Kozlov, Y.N. Karnet, Phys. Mesomech. 16, 9–22 (2013)

    Article  Google Scholar 

  65. T. Wei, G. Luo, Z. Fan, C. Zheng, J. Yan, C. Yao, W. Li, C. Zhang, Carbon 47, 2296–2299 (2009)

    Article  Google Scholar 

  66. L. Xu, G. Chen, W. Wang, L. Li, X. Fang, Compos. A Appl. Sci. Manuf. 84, 472–481 (2016)

    Article  Google Scholar 

  67. İ Mutlay, L.B. Tudoran, Fullerenes. Nanotubes Carbon Nanostr. 22, 413–433 (2014)

    Article  ADS  Google Scholar 

  68. Y. Zare, A. Daraei, M. Vatani, P. Aghasafari, Comput. Mater. Sci. 81, 612–616 (2014)

    Article  Google Scholar 

  69. Y. Zare, Comput. Mater. Sci. 111, 334–338 (2016)

    Article  Google Scholar 

  70. S. Maiti, N.K. Shrivastava, B. Khatua, Polym. Compos. 34, 570–579 (2013)

    Article  Google Scholar 

  71. Y. Zare, K.Y. Rhee, J. Phys. Chem. Solids 131, 15–21 (2019)

    Article  ADS  Google Scholar 

  72. Y. Zare, K.Y. Rhee, Eur. Polymer J. 87, 389–397 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022M3J7A1062940).

Funding

No funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yasser Zare or Kyong Yop Rhee.

Ethics declarations

Competing interest

The authors declare that they have no financial interests.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, Y., Rhee, K.Y. & Hui, D. Predicting of electrical conductivity for graphene-filled products by tunneling mechanism and interphase piece to enhance the performance of breast cancer biosensors. Eur. Phys. J. Plus 137, 980 (2022). https://doi.org/10.1140/epjp/s13360-022-03196-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03196-3

Navigation