Skip to main content
Log in

Radial Distribution Function Analysis and Molecular Simulation of Graphene Nanoplatelets Obtained by Mechanical Ball Milling

  • Nanomaterials and Composites for Energy Conversion and Storage
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Graphene nanoplatelets have been synthesized by ball milling of synthetic graphite and its structural features studied by x-ray analysis using Mo Kα radiation followed by the proposal of a possible molecular arrangement using AVOGADRO® software. Additional characterization using complementary techniques was also performed. The radial and total distribution functions of the coordination number, as well as atomic distances within short-range order, revealed that oxygen atoms were incorporated into the material produced after 24 h of grinding. The structural disorder parameter (ξ) was found to be ~ 3.5, as well as superposition between the second and third coordination spheres (r ~ 2.4 × 10−1 nm), which can be attributed to the presence of oxygen atoms, as suggested by localized defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).

    Article  Google Scholar 

  2. B.E. Warren, J. Chem. Phys. 2, 551 (1934).

    Article  Google Scholar 

  3. D.D.L. Chung, J. Mater. Sci. 37, 1475 (2002).

    Article  Google Scholar 

  4. S. Basu and P. Bhattacharyya, Sens. Actuat. B Chem. 173, 1 (2012).

    Article  Google Scholar 

  5. A.H. CastroNeto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  Google Scholar 

  6. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, and W.A. de Heer, Science 312, 1191 (2006).

    Article  Google Scholar 

  7. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, and J. Kong, Nano Lett. 9, 30 (2009).

    Article  Google Scholar 

  8. Z.Y. Xia, S. Pezzini, E. Treossi, G. Giambastiani, F. Corticelli, V. Morandi, A. Zanelli, V. Bellani, and V. Palermo, Adv. Funct. Mater. 23, 4684 (2013).

    Article  Google Scholar 

  9. K. Simeonidis, T. Gkinis, S. Tresintsi, C. Martinez-Boubeta, G. Vourlias, I. Tsiaoussis, G. Stavropoulos, M. Mitrakas, and M. Angelakeris, Chem. Eng. J. 168, 1008 (2011).

    Article  Google Scholar 

  10. Z. Cvejic, B. Antic, A. Kremenovic, S. Rakic, G.F. Goya, H.R. Rechenberg, C. Jovalekic, and V. Spasojevic, J. Alloys Compd. 472, 571 (2009).

    Article  Google Scholar 

  11. M. Myekhlai, B. Munkhbayar, T. Lee, M.R. Tanshen, H. Chung, and H. Jeong, RSC Adv. 4, 2495 (2014).

    Article  Google Scholar 

  12. C. Cosio-Castañeda, R. Martínez-García, and L.M. Socolovsky, Solid State Sci. 30, 17 (2014).

    Article  Google Scholar 

  13. L.M. Viculis, J.J. Mack, O.M. Mayer, H.T. Hahn, and R.B. Kaner, J. Mater. Chem. 15, 974 (2005).

    Article  Google Scholar 

  14. W. Ren and H.M. Cheng, Nat. Nanotechnol. 9, 726 (2014).

    Article  Google Scholar 

  15. Z.S. Wu, W. Ren, L. Gao, B. Liu, C. Jiang, and H.M. Cheng, Carbon N. Y. 47, 493 (2009).

    Article  Google Scholar 

  16. F. Disma, J. Electrochem. Soc. 143, 3959 (2006).

    Article  Google Scholar 

  17. W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, and G. Chen, J. Mater. Chem. 20, 5817 (2010).

    Article  Google Scholar 

  18. M.Y. Rekha, N. Mallik, and C. Srivastava, Sci. Rep. 8, 1 (2018).

    Google Scholar 

  19. I.-Y. Jeon, Y.-R. Shin, G.-J. Sohn, H.-J. Choi, S.-Y. Bae, J. Mahmood, S.M. Jung, J.-M. Seo, M.-J. Kim, D.W. Chang, L. Dai, and J.-B. Baeka, Proc. Natl. Acad. Sci. 109, 5588 (2012).

    Article  Google Scholar 

  20. V. Vignesh, K. Subramani, M.S. Oh, M. Sathish, and R. Navamathavan, Mater. Chem. Phys. 230, 249 (2019).

    Article  Google Scholar 

  21. W. Song, J. Yan, and H. Ji, Appl. Surf. Sci. 469, 226 (2019).

    Article  Google Scholar 

  22. F. He, K. Lam, D. Ma, J. Fan, L.H. Chan, and L. Zhang, Carbon N. Y. 58, 175 (2013).

    Article  Google Scholar 

  23. J. Qin, Y. Zhang, S.E. Lowe, L. Jiang, H.Y. Ling, G. Shi, P. Liu, S. Zhang, Y.L. Zhong, and H. Zhao, J. Mater. Chem. A 7, 9646 (2019).

    Article  Google Scholar 

  24. G. Shi, S. Araby, C.T. Gibson, Q. Meng, S. Zhu, and J. Ma, Adv. Funct. Mater. 18, 1706705 (2018).

    Article  Google Scholar 

  25. N.A. Marks, Diam. Relat. Mater. 14, 1223 (2005).

    Article  Google Scholar 

  26. J.D. Westwood, P. Georgopoulos, D.H. Whitmore, and J. Non-crystall, Solids 107, 88 (1988).

    Google Scholar 

  27. V.V. Korolev, A.G. Ramazanova, O.V. Balmasova, AYu Soloveva, EYu Buslaeva, S.P. Gubin, and M.S. Gruzdev, J. Magn. Magn. Mater. 476, 604 (2019).

    Article  Google Scholar 

  28. D. Srolovitz, T. Egami, and V. Vitek, Phys. Rev. B 24, 6936 (1981).

    Article  Google Scholar 

  29. Z.Q. Li, C.J. Lu, Z.P. Xia, Y. Zhou, and Z. Luo, Carbon N. Y. 45, 1686 (2007).

    Article  Google Scholar 

  30. P. Liu, Z. Si, W. Lv, X. Wu, R. Ran, D. Weng, and F. Kang, Carbon N. Y. 152, 24 (2019).

    Article  Google Scholar 

  31. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, and J.M. Tour, ACS Nano 4, 4806 (2010).

    Article  Google Scholar 

  32. A. Castro-Beltrán, S. Sepúlveda-Guzmán, W.J. De La Cruz-Hernández, and R. Cruz-Silva, Universidad Autónoma de Nuevo León (UANL), México, Obtención de grafeno mediante la reducción química del óxido de grafito, unpublished research, 2011.

  33. M.A. Abdol, S. Sadeghzadeh, M. Jalaly, and M.M. Khatibi, Sci. Rep. 9, 8127 (2019).

    Article  Google Scholar 

  34. K.S. Subrahmanyam, S.R.C. Vivekchand, A. Govindaraj, and C.N.R. Rao, J. Mater. Chem. 18, 1517 (2008).

    Article  Google Scholar 

  35. M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cançado, A. Jorio, and R. Saito, Phys. Chem. Chem. Phys. 9, 1276 (2007).

    Article  Google Scholar 

  36. S.E. Lowe, G. Shi, Y. Zhang, J. Qin, S. Wang, A. Uijtendaal, J. Sun, L. Jiang, S. Jiang, D. Qi, M. Al-Mamun, O. Liu, Y.L. Zhong, H. Zhao, and A.C.S. Appl, Nano Mater. 2, 867 (2019).

    Google Scholar 

  37. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, Nano Lett. 7, 238 (2007).

    Article  Google Scholar 

  38. M. Bastwros, G.-Y. Kim, C. Zhu, K. Zhang, S. Wang, X. Tang, and X. Wang, Compos. Part B Eng. 60, 111 (2014).

    Article  Google Scholar 

  39. A. Galal, H.K. Hassan, N.F. Atta, A.M. Abdel-Mageed, and T. Jacob, Sci. Rep. 9, 7948 (2019).

    Article  Google Scholar 

  40. Y. Waseda, The Structure of Non Crystalline Materials Liquids and Amorphous Solids (New York (London: McGraw-Hill, 1980), p. 1.

    Google Scholar 

  41. D.A. Keen, J. Appl. Crystallogr. 34, 172 (2001).

    Article  Google Scholar 

  42. G.S. Cargill, Solid State Phys. 30, 227 (1975).

    Article  Google Scholar 

  43. H.P. Klug and L.E. Alexander, X-ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd ed. (New York: Wiley, 1974), p. 1.

    Google Scholar 

  44. A. Piarristeguy, M. Mirandou, M. Fontana, and B. Arcondo, J. Non. Cryst. Solids 273, 30 (2000).

    Article  Google Scholar 

  45. A.T. Smith, A.M. La Chance, S. Zeng, B. Liu, and L. Sun, Nano Mater. Sci. 1, 31 (2019).

    Article  Google Scholar 

  46. D.E. Curtis, T. Vandermeersch, G.R. Hutchison, D.C. Lonie, E. Zurek, and M.D. Hanwell, J. Cheminform. 4, 17 (2012).

    Article  Google Scholar 

  47. X. Fan, D.W. Chang, X. Chen, J.B. Baek, and L. Dai, Curr. Opin. Chem. Eng. 11, 52 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Argentinean Consejo de Investigaciones Científicas y Tecnológicas (CONICET), PIP 039 CO/17; and UBACyT 20020150100088BA. We are grateful to Dr. Fabio Saccone and Dr. Gabriel Ybarra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Pagnola.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 835 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagnola, M.R., Morales, F., Tancredi, P. et al. Radial Distribution Function Analysis and Molecular Simulation of Graphene Nanoplatelets Obtained by Mechanical Ball Milling. JOM 73, 2471–2478 (2021). https://doi.org/10.1007/s11837-020-04499-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04499-5

Navigation