Skip to main content
Log in

Quantum coherence in neutrino oscillation in matter

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A closer and more detailed study of neutrino oscillation, in addition to assisting us in founding physics beyond the standard model, can potentially be used to understand the fundamental aspects of quantum mechanics. In particular, we know that the neutrino oscillation occurs because the quantum states of the produced and detected neutrinos are a coherent superposition of the mass eigenstates, and this coherency is maintained during the propagation due to the small mass difference of neutrinos. In this paper, we consider the decoherence due to the neutrino interaction in the material medium with constant density in addition to the decoherence coming from the localization properties. For this purpose, we use \(l_1\text {-norm}\) in order to quantify the coherence and investigate its dependence on the matter density. According to our results, in general, the coherence in material medium is less than vacuum. However, there exist exceptions; for some matter densities, the localization coherence lengths become infinite. So, for these cases, \(l_1\text {-norm}\) in matter is more than the vacuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. We should notice that there are two values for potential (\(V=2.242\times 10^{-15}eV\) and \(V=1.099\times 10^{-14}eV\)) in which \({L^m}^{\text {coh}}_{21}\) becomes infinite. However, in the case of larger value, the decoherence due to the interaction with matter cause this effect to be irrelevant.

References

  1. T. Schwetz, M. Tortola, J.W. Valle, New J. Phys. 10, 113011 (2008)

    Article  ADS  Google Scholar 

  2. E.K. Akhmedov, A.Y. Smirnov, Phys. At. Nucl. 72, 1363 (2009)

    Article  Google Scholar 

  3. L. Wolfenstein, Phys. Rev. D 17, 2369 (1978)

    Article  ADS  Google Scholar 

  4. S.P. Mikheev, AYu. Smirnov, Sov. J. Nucl. Phys. 42, 913 (1985)

    Google Scholar 

  5. T. Baumgratz, M. Cramer, M.B. Plenio, Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  6. A. Streltsov, G. Adesso, M.B. Plenio, Rev. Mod. Phys. 89, 041003 (2017)

    Article  ADS  Google Scholar 

  7. A.G. Cohen, S.L. Glashow, Z. Ligeti, Phys. Lett. B 678(2), 191 (2009)

    Article  ADS  Google Scholar 

  8. X.-K. Song et al., Phys. Rev. A 98, 050302 (2018)

    Article  ADS  Google Scholar 

  9. B. Kayser, Phys. Rev. D 24, 110 (1981)

    Article  ADS  Google Scholar 

  10. C. Giunti, C.W. Kim, Phys. Rev. D 58, 017301 (1998)

    Article  ADS  Google Scholar 

  11. J.T. Peltoniemi, V. Sipiläinen, JHEP 06, 011 (2000)

    Article  ADS  Google Scholar 

  12. M.M. Ettefaghi, Z. Askaripour Ravari, Phys. Lett. B 747, 59 (2015)

    Article  ADS  Google Scholar 

  13. M.M. Ettefaghi, Z. Askaripour Ravari, Phys. Scr. 95, 035301 (2020)

    Article  ADS  Google Scholar 

  14. D.V. Naumov, V.A. Naumov, Phys. Part. Nucl. 51, 1–106 (2020)

    Article  Google Scholar 

  15. Y.P. Porto-Silva, AYu. Smirnov, JCAP 06, 029 (2021)

    Article  ADS  Google Scholar 

  16. P.B. Denton, H. Minakata, S.J. Parke, J. High Energy Phys. 1606, 051 (2016)

    Article  ADS  Google Scholar 

  17. I. Esteban, M.C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni, T. Schwetz, JHEP 01, 106 (2019)

    Article  ADS  Google Scholar 

  18. M. Blasone et al., EPL 85, 50002 (2009)

    Article  ADS  Google Scholar 

  19. M. Blasone et al., EPL 112, 20007 (2015)

    Article  ADS  Google Scholar 

  20. M.M. Ettefaghi, Z.S. Tabatabaei Lofti, R. Ramezani Arani, EPL 132, 31002 (2020)

    Article  ADS  Google Scholar 

  21. J.A. Formaggio, D.I. Kaiser, M.M. Murskyj, T.E. Weiss, Phys. Rev. Lett. 117(5), 050402 (2016)

    Article  ADS  Google Scholar 

  22. T. Ohlsson, H. Snellman, Eur. Phys. J. C 20, 507 (2001)

    Article  ADS  Google Scholar 

  23. P.M. Fishbane, S.G. Gasiorowicz, Phys. Rev. D 64, 113017 (2001)

    Article  ADS  Google Scholar 

  24. EKh. Akhmedov, R. Johansson, M. Lindner, T. Ohlsson, T. Schwetz, JHEP 0404, 078 (2004)

    Article  ADS  Google Scholar 

  25. A.Y. Smirnov, Phys. Scr. 121, 57 (2005)

    Article  Google Scholar 

  26. E.K. Akhmedov, V. Niro, JHEP 12, 106 (2008)

    ADS  Google Scholar 

  27. E.K. Akhmedov, A. Wilhelm, JHEP 01, 165 (2013)

    Article  ADS  Google Scholar 

  28. M. Blennow, A.Y. Smirnov, Adv. High Energy Phys. 2013, 972485 (2013)

    Article  Google Scholar 

  29. H. Minakata, S.J. Parke, JHEP 01, 180 (2016)

    Article  ADS  Google Scholar 

  30. A. Ioannisian, S. Pokorski, Phys. Lett. B 782, 641 (2018)

    Article  ADS  Google Scholar 

  31. S. Luo, Phys. Rev. D 101, 033005 (2020)

    Article  ADS  Google Scholar 

  32. E.K. Akhmedov, JHEP 02, 107 (2021)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Ettefaghi.

Appendix A: A method for diagonalizing neutrino Hamiltonian in uniform matter

Appendix A: A method for diagonalizing neutrino Hamiltonian in uniform matter

The scattering of neutrino off electrons in the matter causes the electron neutrinos to feel an additional potential V which varies with position, consequently t, when the density of matter varies with the position. In general, V(x) leads the dispersion relation between the momentum \(|\vec {p}|\) and the energy E of neutrinos to be changed. Therefore, the investigation of time evolution of the realistic three generations scheme becomes complicated, generally speaking. Many authors have considered this problem [16, 22,23,24,25,26,27,28,29,30,31,32]. In particular, neutrino oscillation in the matter has been treated comprehensively in Refs. [26, 28]. More simplified and accurate arguments have been performed for the oscillations in uniform matter density versus baseline divided by neutrino energy plane by using a perturbative framework in Ref. [16]. As was said, we use the method developed in Ref. [16] to diagonalize the Hamiltonian for a uniform matter. Here, we give a brief of it.

We suppose the flavor eigenstates are written in terms of mass eigenstates as follows:

$$\begin{aligned} \left| \nu _\alpha \right\rangle = \sum _{i=1}^3 U^*_{\alpha i}\left| \nu _i\right\rangle , \end{aligned}$$
(A1)

where \(U_{\alpha i}\) is giving in Eq. 3. One can decompose \(U_{\text {PMNS}}\) as follows:

$$\begin{aligned} U_{\text {PMNS}}=U_{23}(\theta _{23})I_\delta U_{13}(\theta _{13})I_\delta ^*U_{12}(\theta _{12}), \end{aligned}$$
(A2)

in which

$$\begin{aligned} U_{23}(\theta _{23})=\begin{bmatrix} 1 &{}\quad 0 &{}\quad 0 \\ 0&{}\quad c_{23} &{}\quad s_{23} \\ 0&{}\quad -s_{23} &{}\quad c_{23} \\ \end{bmatrix},\,\,\,\,\, I_\delta =\begin{bmatrix} 1 &{}\quad 0&{}\quad 0 \\ 0&{}\quad 1 &{}\quad 0 \\ 0&{}\quad 0 &{}\quad e^{i\delta } \\ \end{bmatrix},\,\,\,\,\, U_{13}(\theta _{13})=\begin{bmatrix} c_{13} &{}\quad 0&{}\quad s_{13} \\ 0&{}\quad 1 &{}\quad 0 \\ -s_{13}&{}\quad 0&{}\quad c_{13} \\ \end{bmatrix},\,\,\,\,\, U_{12}(\theta _{12})=\begin{bmatrix} c_{12} &{}\quad s_{12} &{}\quad 0 \\ -s_{12}&{}\quad c_{12} &{}\quad 0 \\ 0&{}\quad 0 &{}\quad 1 \\ \end{bmatrix}. \end{aligned}$$
(A3)

The time evolution of the neutrino state in the presence of matter potential is governed by the following Schrodinger equation:

$$\begin{aligned} i\partial _t|\nu _\alpha ,t\rangle =\frac{1}{2E}\left[ U_{\text {PMNS}}{\text {diag}}\left( 0,\Delta m_{21}^2,\Delta m_{31}^2 \right) U_{\text {PMNS}}^\dagger +{\text {diag}(2EV(x),0,0)}\right] |\nu _\alpha ,t\rangle , \end{aligned}$$
(A4)

where \(V(x)=\sqrt{2}G_FN_e(x)\). \(N_e\) denotes the density of electron in the medium and hereafter we assume it to be constant. We know that the neutrino interactions with matter in the medium do not alter CP phase \(\delta \) and mixing angle \(\theta _{23}\). So Eq. (A4) is covariant under the inverse transformation \(U^{-1}_{23}(\theta _{23})\) and \(I^{-1}_{\delta }\). Therefore, we can write the Hamiltonian as follows:

$$\begin{aligned} \acute{H}=\frac{1}{2E}\left[ U_{13}(\theta _{13})U_{12}(\theta _{12}){\text {diag}}\left( 0,\Delta m_{21}^2,\Delta m_{31}^2 \right) U_{12}^\dagger (\theta _{12}) U_{13}^\dagger (\theta _{13}) + {\text {diag}(2EV,0,0)}\right] . \end{aligned}$$
(A5)

Now, one can diagonalize \(\acute{H}\) by applying two consecutive rotations in the matter. First, one needs to do the \(\theta _{13}^m\) rotation:

$$\begin{aligned} H'=U_{13}^{\dagger }(\theta _{13}^m)\acute{H}U_{13}(\theta _{13}^m), \end{aligned}$$
(A6)

where

$$\begin{aligned} U_{13}^{\dagger }(\theta _{13}^m)=\begin{bmatrix} \cos \theta _{13}^m &{}0&{}-\sin \theta _{13}^m \\ 0&{}1 &{}0 \\ \sin \theta _{13}^m&{}0&{}\cos \theta _{13}^m \\ \end{bmatrix}, \end{aligned}$$
(A7)

with

$$\begin{aligned} \theta _{13}^m=\dfrac{1}{2}\arctan \left[ \dfrac{\epsilon \sin {2\theta _{13}}}{\epsilon \cos {2\theta _{13}}-2EV}\right] . \end{aligned}$$
(A8)

Here, \(\epsilon \) is given by

$$\begin{aligned} \epsilon =\Delta m_{31}^2-\Delta m_{21}^2\sin ^2{\theta _{12}}. \end{aligned}$$
(A9)

Therefore, \(H'\) is obtained as follows:

$$\begin{aligned} H'= & {} \dfrac{1}{2E}\begin{bmatrix} l_1&{}0&{}0\\ 0&{}l_2&{}0\\ 0&{}0&{}l_3\\ \end{bmatrix}\nonumber \\&+\dfrac{\Delta m_{21}^2\sin {2\theta _{12}}}{4E}\begin{bmatrix} 0&{}\cos (\theta _{13}-\theta _{13}^m)&{}0\\ \cos (\theta _{13}-\theta _{13}^m)&{}0&{}-\sin (\theta _{13}-\theta _{13}^m)\\ 0&{}-\sin (\theta _{13}-\theta _{13}^m)&{}0\\ \end{bmatrix}, \end{aligned}$$
(A10)

in which

$$\begin{aligned} l_2= & {} \Delta m_{21}^2\cos ^2{\theta _{12}}, \end{aligned}$$
(A11)
$$\begin{aligned} l_{1,3}= & {} \dfrac{1}{2}\left[ \left( \Delta m_{31}^2+2EV+\Delta m^2_{21}\sin ^2\theta _{12}\right) \mp \sqrt{(2EV)^2+\epsilon ^2-4EV\epsilon \cos {2\theta _{13}}}\right] . \end{aligned}$$
(A12)

Second, a rotation with \(\theta _{12}^m\) angle must be performed such a way that \(H'\) is transformed as follows:

$$\begin{aligned} H''=U_{12}^{\dagger }(\theta _{12}^m)H'U_{12}(\theta _{12}^m)=H_0+H_1, \end{aligned}$$
(A13)

with

$$\begin{aligned} H_0=\begin{bmatrix} E^m_1&{}\quad 0&{}\quad 0\\ 0&{}\quad E^m_2&{}\quad 0\\ 0&{}\quad 0&{}\quad E^m_3\\ \end{bmatrix}, \end{aligned}$$
(A14)

where

$$\begin{aligned} E^m_3= & {} \frac{l_3}{2E}, \end{aligned}$$
(A15)
$$\begin{aligned} E^m_{1,2}= & {} \frac{1}{4E}\left[ (l_1+l_2) \mp \sqrt{(l_1-l_2)^2+\Delta m_{21}^4\sin ^2{2\theta _{12}}\cos ^2({\theta _{13}}-\theta _{13}^m})\right] , \end{aligned}$$
(A16)

and

$$\begin{aligned} H_1=\dfrac{1}{4E}\Delta m_{21}^2 \sin {2\theta _{12}}\sin (\theta _{13}-\theta _{13}^m)\begin{bmatrix} 0&{}0&{}\sin {\theta _{12}^m}\\ 0&{}0&{}-\cos {\theta _{12}^m}\\ \sin {\theta _{12}^m}&{}-\cos {\theta _{12}^m}&{}0\\ \end{bmatrix}. \end{aligned}$$
(A17)

\(U_{12}^{\dagger }(\theta _{12}^m)\) is defined by

$$\begin{aligned} U_{12}^{\dagger }(\theta _{12}^m)=\begin{bmatrix} \cos \theta _{12}^m &{} -\sin \theta _{12}^m &{}0 \\ \sin \theta _{12}^m&{}\cos \theta _{12}^m &{}0 \\ 0&{}0 &{}1 \\ \end{bmatrix}, \end{aligned}$$
(A18)

in which

$$\begin{aligned} \theta _{12}^m=\dfrac{1}{2}\arctan \left[ \Delta m_{21}^2\dfrac{\sin {2\theta _{12}}}{l_2-l_1}\cos (\theta _{13}-\theta _{13}^m)\right] . \end{aligned}$$
(A19)

In Eq. (A13), \(H_0\) has the main contribution in the total Hamiltonian \(H''\) and one can treat perturbatively with \(H_1\). However, in this paper we ignore the \(H_1\) contribution because it will have no remarkable effects on our results.

In the case of anti-neutrino, the following changes are necessary:

$$\begin{aligned} I_\delta \longrightarrow I_\delta ^*, \end{aligned}$$
(A20)

and

$$\begin{aligned} V\longrightarrow -V. \end{aligned}$$
(A21)

Therefore, the final parameters of the anti-neutrino oscillation in matter are given by

$$\begin{aligned} {\bar{\theta }}_{13}^m= & {} \dfrac{1}{2}\arctan \left[ \dfrac{\epsilon \sin {2\theta _{13}}}{\epsilon \cos {2\theta _{13}}+2EV}\right] , \end{aligned}$$
(A22)
$$\begin{aligned} {\bar{\theta }}_{12}^m= & {} \dfrac{1}{2}\arctan \left[ \Delta m_{21}^2 \cos (\theta _{13}-{\bar{\theta }}_{13}^m)\dfrac{\sin {2\theta _{12}}}{{\bar{l}}_2-{\bar{l}}_1}\right] , \end{aligned}$$
(A23)
$$\begin{aligned} {{\bar{E}}}^m_3= & {} \frac{{\bar{l}}_3}{2E}, \end{aligned}$$
(A24)
$$\begin{aligned} {{\bar{E}}}^m_{1,2}= & {} \dfrac{1}{4E} \left[ ({\bar{l}}_1+{\bar{l}}_2)\mp \sqrt{({\bar{l}}_1-{\bar{l}}_2)^2 +\Delta m_{21}^4\sin ^2{2\theta _{12}}\cos ^2({\theta _{13}}-\bar{\theta }_{13}^m})\right] , \end{aligned}$$
(A25)

with

$$\begin{aligned}&\bar{l}_2=l_2=\Delta m_{21}^2\cos ^2{\theta _{12}}, \end{aligned}$$
(A26)
$$\begin{aligned}&\bar{l}_{1,3}=\dfrac{1}{2}\left[ \left( \Delta m_{31}^2-2EV+\Delta m_{21}^2\sin ^2{\theta _{12}}\right) \mp \sqrt{(2EV)^2+\epsilon ^2+4EV\epsilon \cos {2\theta _{13}}}\right] . \end{aligned}$$
(A27)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravari, Z.A., Ettefaghi, M.M. & Miraboutalebi, S. Quantum coherence in neutrino oscillation in matter. Eur. Phys. J. Plus 137, 488 (2022). https://doi.org/10.1140/epjp/s13360-022-02717-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02717-4

Navigation