Skip to main content
Log in

Quantum field theoretic approach to neutrino oscillations in matter

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider neutrino oscillations in non-uniform matter in a quantum field theoretic (QFT) approach, in which neutrino production, propagation and detection are considered as a single process. We find the conditions under which the oscillation probability can be sensibly defined and demonstrate how the properly normalized oscillation probability can be obtained in the QFT framework. We derive the evolution equation for the oscillation amplitude and discuss the conditions under which it reduces to the standard Schrödinger-like evolution equation. It is shown that, contrary to the common usage, the Schrödinger-like evolution equation is not applicable in certain cases, such as oscillations of neutrinos produced in decays of free pions provided that sterile neutrinos with Δm 2 ≳ 1 eV2 exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Wolfenstein, Neutrino Oscillations in Matter, Phys. Rev. D 17 (1978) 2369 [INSPIRE].

    ADS  Google Scholar 

  2. S. Mikheev and A.Y. Smirnov, Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrinos, Sov. J. Nucl. Phys. 42 (1985) 913 [INSPIRE].

    Google Scholar 

  3. V.K. Ermilova, V.A. Tsarev and V.A. Chechin, Parametric resonance of neutrino oscillations in matter (in Russian), Kr. Soob, Fiz. [Short Notices of the Lebedev Institute] 5 (1986) 26.

  4. E.K. Akhmedov, Neutrino oscillations in inhomogeneous matter (In Russian), Sov. J. Nucl. Phys. 47 (1988) 301 [INSPIRE].

    Google Scholar 

  5. A. Halprin, Neutrino oscillations in nonuniform matter, Phys. Rev. D 34 (1986) 3462 [INSPIRE].

    ADS  Google Scholar 

  6. L.N. Chang and R. Zia, Anomalous propagation of neutrino beams through dense media, Phys. Rev. D 38 (1988) 1669 [INSPIRE].

    ADS  Google Scholar 

  7. P.D. Mannheim, Derivation of the formalism for neutrino matter oscillations from the neutrino relativistic field equations, Phys. Rev. D 37 (1988) 1935 [INSPIRE].

    ADS  Google Scholar 

  8. R. Sawyer, Neutrino oscillations in inhomogeneous matter, Phys. Rev. D 42 (1990) 3908 [INSPIRE].

    ADS  Google Scholar 

  9. W. Grimus and T. Scharnagl, Neutrino propagation in matter and electromagnetic fields, Mod. Phys. Lett. A 8 (1993) 1943 [INSPIRE].

    ADS  Google Scholar 

  10. C.Y. Cardall and D.J. Chung, The MSW effect in quantum field theory, Phys. Rev. D 60 (1999) 073012 [hep-ph/9904291] [INSPIRE].

    ADS  Google Scholar 

  11. E.K. Akhmedov and J. Kopp, Neutrino oscillations: quantum mechanics vs. quantum field theory, JHEP 04 (2010) 008 [arXiv:1001.4815] [INSPIRE].

    Article  ADS  Google Scholar 

  12. E.I. Gates and K.L. Kowalski, Majorana Feynman Rules, Phys. Rev. D 37 (1988) 938 [INSPIRE].

    ADS  Google Scholar 

  13. A. Denner, H. Eck, O. Hahn and J. Kublbeck, Feynman rules for fermion number violating interactions, Nucl. Phys. B 387 (1992) 467 [INSPIRE].

    Article  ADS  Google Scholar 

  14. M.E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory, Addison-Wesley (1995).

  15. W. Grimus and P. Stöckinger, Real oscillations of virtual neutrinos, Phys. Rev. D 54 (1996) 3414 [hep-ph/9603430] [INSPIRE].

    ADS  Google Scholar 

  16. M. Beuthe, Oscillations of neutrinos and mesons in quantum field theory, Phys. Rept. 375 (2003) 105 [hep-ph/0109119] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. P. Langacker, J.P. Leveille and J. Sheiman, On the Detection of Cosmological Neutrinos by Coherent Scattering, Phys. Rev. D 27 (1983) 1228 [INSPIRE].

    ADS  Google Scholar 

  18. D. Notzold and G. Raffelt, Neutrino Dispersion at Finite Temperature and Density, Nucl. Phys. B 307 (1988) 924 [INSPIRE].

    Article  ADS  Google Scholar 

  19. F. Botella, C. Lim and W. Marciano, Radiative corrections to neutrino indices of refraction, Phys. Rev. D 35 (1987) 896 [INSPIRE].

    ADS  Google Scholar 

  20. E.K. Akhmedov, C. Lunardini and A.Y. Smirnov, Supernova neutrinos: difference of muon-neutrino - tau-neutrino fluxes and conversion effects, Nucl. Phys. B 643 (2002) 339 [hep-ph/0204091] [INSPIRE].

    Article  ADS  Google Scholar 

  21. A. Mirizzi, S. Pozzorini, G.G. Raffelt and P.D. Serpico, Flavour-dependent radiative correction to neutrino-neutrino refraction, JHEP 10 (2009) 020 [arXiv:0907.3674] [INSPIRE].

    Article  ADS  Google Scholar 

  22. G. Sigl and G. Raffelt, General kinetic description of relativistic mixed neutrinos, Nucl. Phys. B 406 (1993) 423 [INSPIRE].

    Article  ADS  Google Scholar 

  23. J.T. Pantaleone, Dirac neutrinos in dense matter, Phys. Rev. D 46 (1992) 510 [INSPIRE].

    ADS  Google Scholar 

  24. J.T. Pantaleone, Neutrino oscillations at high densities, Phys. Lett. B 287 (1992) 128 [INSPIRE].

    ADS  Google Scholar 

  25. S. Samuel, Neutrino oscillations in dense neutrino gases, Phys. Rev. D 48 (1993) 1462 [INSPIRE].

    ADS  Google Scholar 

  26. S. Esposito and G. Capone, Neutrino propagation in a medium with a magnetic field, Z. Phys. C 70 (1996) 55 [hep-ph/9511417] [INSPIRE].

    ADS  Google Scholar 

  27. J.C. D’Olivo and J.F. Nieves, Chirality preserving neutrino oscillations in an external magnetic field, Phys. Lett. B 383 (1996) 87 [hep-ph/9512428] [INSPIRE].

    ADS  Google Scholar 

  28. P. Elmfors, D. Grasso and G. Raffelt, Neutrino dispersion in magnetized media and spin oscillations in the early universe, Nucl. Phys. B 479 (1996) 3 [hep-ph/9605250] [INSPIRE].

    Article  ADS  Google Scholar 

  29. H. Nunokawa, V. Semikoz, A.Y. Smirnov and J. Valle, Neutrino conversions in a polarized medium, Nucl. Phys. B 501 (1997) 17 [hep-ph/9701420] [INSPIRE].

    Article  ADS  Google Scholar 

  30. E.K. Akhmedov, A. Lanza and D. Sciama, Resonant spin flavor precession of neutrinos and pulsar velocities, Phys. Rev. D 56 (1997) 6117 [hep-ph/9702436] [INSPIRE].

    ADS  Google Scholar 

  31. A. Erdélyi, Asymptotic expansions, Dover, 1956.

  32. G. Raffelt and D. Seckel, A selfconsistent approach to neutral current processes in supernova cores, Phys. Rev. D 52 (1995) 1780 [astro-ph/9312019] [INSPIRE].

    ADS  Google Scholar 

  33. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  34. D. Hernandez and A.Y. Smirnov, Active to sterile neutrino oscillations: coherence and MINOS results, Phys. Lett. B 706 (2012) 360 [arXiv:1105.5946] [INSPIRE].

    ADS  Google Scholar 

  35. E. Akhmedov, D. Hernandez and A. Smirnov, Neutrino production coherence and oscillation experiments, JHEP 04 (2012) 052 [arXiv:1201.4128] [INSPIRE].

    Article  ADS  Google Scholar 

  36. Talks at Sterile Neutrinos at Crossroads, Blacksburg, U.S.A., September 25-28, 2011, http://www.cpe.vt.edu/snac/program.html.

  37. K. Abazajian, M. Acero, S. Agarwalla, A. Aguilar-Arevalo, C. Albright, et al., Light Sterile Neutrinos: A White Paper, arXiv:1204.5379 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Kh. Akhmedov.

Additional information

ArXiv ePrint: 1205.6231

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhmedov, E.K., Wilhelm, A. Quantum field theoretic approach to neutrino oscillations in matter. J. High Energ. Phys. 2013, 165 (2013). https://doi.org/10.1007/JHEP01(2013)165

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2013)165

Keywords

Navigation