Skip to main content

Advertisement

Log in

Influence of activation energy and applied magnetic field on triple-diffusive quadratic mixed convective nanoliquid flow about a slender cylinder

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In many industrial processes such as paper manufacturing, optical fibre, nanowires, and coating, the process design engineers are concerned with efficient heat and mass transfer rates near bounding surfaces of the fluid machinery. The prime objective of the study is to analyse the effects of a binary chemical reaction and Arrhenius activation energy in a quadratic combined convective magneto nanofluid flow about a moving slender cylinder. In addition, the study comprises activation energies and binary chemical reactions for species diffusion, namely liquid hydrogen and oxygen diffusions, which are often employed as control mechanisms for efficient heating and cooling processes. The highly coupled nonlinear partial differential equations (NPDEs) with boundary constraints have been used to model the flow problem, which are then converted into a dimensionless set of equations by utilizing non-similar transformations. Further, the obtained set of NPDEs would be linearized via the quasilinearization technique and then numerically solved by the implicit finite difference method. The study’s interesting and important results are that the rising activation energy values increase the species concentration distributions and decrease the same for chemical reaction parameters. The augmenting values of the quadratic convection and thermophoresis characteristics enhance the nanoliquid’s velocity and temperature, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\( {\text{Gr}} = \frac{{g\,\beta _{1} (1 - \phi _{\infty } )\,(T_{{\text{w}}} - T_{\infty } )\,z^{3} }}{{\nu ^{2} }} \) :

Grashof number

\({\text{Nr}} = \frac{{(\rho_{{\text{P}}} - \rho_{{\text{f}}} )(\phi_{{\text{w}}} - \phi_{\infty } )}}{{\rho_{{\text{f}}} \beta_{{\text{T}}} (T_{{\text{w}}} - T_{\infty } )(1 - \phi_{\infty } )}}\) :

Nanoparticle buoyancy ratio parameter

\({\text{Re}} \, = \,\frac{{U_{0} z}}{\nu }\) :

Reynolds number

\({\text{Nb}} = \frac{{{\text{JD}}_{{\text{B}}} (\phi_{{\text{w}}} - \phi_{\infty } )}}{\nu }\) :

Brownian motion parameter

\({\text{Nt}} = \frac{{{\text{JD}}_{{\text{T}}} (T_{{\text{w}}} - T_{\infty } )}}{{\nu T_{\infty } }}\) :

Thermophoresis parameter

\({\text{Le}} = \frac{\nu }{{D_{{\text{B}}} }}\) :

Lewis number

\({\text{Nc}}_{1} = \frac{{\beta_{3} (C_{{1_{{\text{w}}} }} - C_{{1_{\infty } }} )}}{{\beta_{1} (T_{{\text{w}}} - T_{\infty } )}}\) :

Buoyancy ratio parameter of liquid hydrogen

\({\text{Nc}}_{2} = \frac{{\beta_{5} (C_{{2_{{\text{w}}} }} - C_{{2_{\infty } }} )}}{{\beta_{1} (T_{{\text{w}}} - T_{\infty } )}}\) :

Buoyancy ratio parameter of oxygen

\({\text{Pr}} = \frac{\nu }{{\alpha_{{\text{m}}} }}\) :

Prandtl number

\({\text{Ri}} = \frac{{{\text{Gr}}}}{{{\text{Re}}^{2} }}\) :

Richardson number

\({\text{Sc}}_{1} = \frac{\nu }{{D_{{{\text{S}}_{1} }} }}\) :

Schmidt number for liquid hydrogen

\({\text{Kc}}_{1} = \frac{{K_{{{\text{r}}1}} \nu }}{{U_{\infty }^{2} }}\) :

Chemical reaction parameter for liquid hydrogen

\({\text{Kc}}_{2} = \frac{{K_{{{\text{r}}2}} \nu }}{{U_{\infty }^{2} }}\) :

Chemical reaction parameter for liquid oxygen

\(E_{1} = \frac{{{\text{Ea}}_{1} }}{{k_{1}^{*} T_{\infty } }}\) :

Modified Arrhenius activation energy for liquid hydrogen

\(E_{2} = \frac{{{\text{Ea}}_{2} }}{{k_{2}^{*} T_{\infty } }}\) :

Modified Arrhenius activation energy for liquid oxygen

\({\text{Sc}}_{2} = \frac{\nu }{{D_{{{\text{S}}_{2} }} }}\) :

Schmidt number for oxygen

\(J = \frac{{\rho_{{\text{P}}} C_{{{\text{PP}}}} }}{{\rho_{{\text{f}}} C_{{{\text{Pf}}}} }}\) :

Ratio of heat capacities of nanoparticles and the fluid

\(\gamma = \,\frac{{\beta_{2} }}{{\beta_{1} }}\left( {T_{{\text{w}}} - T_{\infty } } \right)\) :

The nonlinear mixed convection parameter

\(\varepsilon = \,2\frac{{U_{{\text{w}}} }}{{U_{\infty } }}\) :

Velocity ratio parameter

\(D_{{\text{B}}}\) :

Brownian diffusion coefficient (m2 s1)

\(C_{{\text{f}}}\) :

Surface-friction coefficient

\(f\) :

Dimensionless stream function

\(F\) :

Dimensional velocity distribution

\(g\) :

Acceleration due to gravity (ms2)

\(G\) :

Temperature distribution (K)

\(T_{{\text{w}}} ,\,\,T_{\infty }\) :

, Wall and ambient temperature conditions (K)

\(D_{{\text{T}}}\) :

Thermophoretic diffusion coefficient (m2 s1)

\(C_{{{\text{pf}}}}\) :

Specific heat of the fluid due to constant pressure \(({\text{JK}}^{ - 1} )\)

\(C_{{1{\text{w}}}} ,C_{{2{\text{w}}}}\) :

Liquid hydrogen and liquid oxygen concentration at the wall

\( C_{{1\infty }} ,C_{{2\infty }} \) :

Mainstream values of species concentration liquid hydrogen and liquid oxygen

\(C_{{{\text{pp}}}}\) :

Specific heat of nanoparticles \(({\text{JK}}^{ - 1} )\)

\({\text{Nu}}\) :

Nusselt number

R :

Slender cylinder radius (m)

\(n_{1} ,n_{2}\) :

Rate constants for liquid hydrogen and oxygen

\({\text{Ea}}_{1} ,{\text{Ea}}_{2}\) :

The activation energy for liquid hydrogen and oxygen (KJ/mol)

P :

Concentration distribution of liquid oxygen

r :

Radial coordinate (m)

\(H\) :

Concentration distribution of liquid hydrogen

\({\text{Sh}}_{1} ,{\text{Sh}}_{2}\) :

The mass transport rate of liquid hydrogen and oxygen

\({\text{NSh}}\) :

Nanoparticle Sherwood number

S :

Nanoparticle volume fraction distribution

\(\alpha_{{\text{m}}}\) :

Thermal diffusivity

\(\rho_{p}\) :

Nanoparticle mass density (Kg m3)

\(\xi\) :

Transverse curvature

\(\phi\) :

Volume fraction of nanoliquid

\(\beta_{{{\text{C}}_{1} }} ,\beta_{{{\text{C}}_{2} }}\) :

Nonlinear liquid hydrogen and oxygen expansion coefficients

\(\eta\) :

Non-dimensional coordinate

\(\nu\) :

Kinematic viscosity (m2 s1)

\(\phi_{\infty }\) :

Nanofluid volume fraction at ambient region

\(\rho_{{\text{f}}}\) :

Density of regular liquid (Kgm3)

\(\rho\) :

Nanofluid density (Kgm3)

\(\psi\) :

Stream function

\(\phi_{{\text{w}}}\) :

Nanofluid volume fraction at the wall

\(\lambda\) :

Temperature difference parameter (K)

\(U_{0}\) :

Reference velocity (ms1)

\(U_{{\text{w}}}\) :

Wall velocity (ms1)

\(u\) :

Axial velocity component (ms1)

\(U_{\infty }\) :

Free stream velocity (ms1)

\(v\) :

Radial velocity component (ms1)

\(z\) :

Axial coordinate (m)

\(w,\infty\) :

Conditions at the wall and infinity

References

  1. A.R. Bestman, Int. J. Ener. Res. 14, 389 (1990)

    Article  Google Scholar 

  2. K.A. Maleque, ISRN Thermodyn. (2020). https://doi.org/10.1155/2013/284637

    Article  Google Scholar 

  3. Z. Shafique, M. Mustafa, A. Mushtaq, Res. Phys. 6, 627 (2016)

    Google Scholar 

  4. M.I. Khan, T. Nasir, T. Hayat, N.B. Khan, A. Alsaedi, J. Compu. Des. Eng. 7, 279 (2020)

    Google Scholar 

  5. S.U.S. Choi, J.A. Eastman, in ASME Int. Mech. Eng. Cong. Exp., San Francisco CA 99 (1995)

  6. C. RamReddy, P. Naveen, Multi. Model. Mat. Struct. 16, 169 (2020)

    Article  Google Scholar 

  7. M. Dhlamini, P.K. Kameswaran, P. Sibanda, S. Motsa, H. Mondal, J. Compu. Des. Eng. 6, 149 (2019)

    Google Scholar 

  8. W. Ibrahim, M. Negera, Adv. Math. Phys. (2020). https://doi.org/10.1155/2020/9523630

    Article  Google Scholar 

  9. M. Ali, M. Shahzad, F. Sultan, W.A. Khan, S. Rashid, Int. Commun. Heat Mass Transf. 116, 104674 (2020)

    Article  Google Scholar 

  10. M.I. Khan, M.W.A. Khan, A. Alsaedi, T. Hayat, M.I. Khan, Phys. A Stat. Mech. Appl. 538, 122806 (2020)

    Article  Google Scholar 

  11. F.E. Alsaadi, I. Ullah, T. Hayat, F.E. Alsaadi, J. Therm. Anal. Calor. 140, 799 (2020)

    Article  Google Scholar 

  12. S.R.R. Reddy, P.B.A. Reddy, A.M. Rashad, Arab. J. Sci. Eng. 45, 5227 (2020)

    Article  Google Scholar 

  13. N.S. Khan, P. Kumam, P. Thounthong, Sci. Rep. 10, 1226 (2020)

    Article  ADS  Google Scholar 

  14. S.S.U. Devi, F. Mabood, Int. Commun. Heat Mass Transf. 118, 104857 (2020)

    Article  Google Scholar 

  15. P.C. Sinha, Chem. Eng. Sci. 24, 33 (1969)

    Article  Google Scholar 

  16. K. Vajravelu, K.S. Sastri, Int. J. Heat Mass Transf. 20, 655 (1977)

    Article  ADS  Google Scholar 

  17. S. Shaw, P.K. Kameswaran, P. Sibanda, Bound. Value Probl. (2017). https://doi.org/10.1186/s13661-015-0506-2

    Article  Google Scholar 

  18. T. Hayat, S. Qayyum, S.A. Shehzad, A. Alsaedi, J. Mol. Liq. 230, 641 (2017)

    Article  Google Scholar 

  19. M.I. Khan, T.A. Khan, S. Qayyum, T. Hayat, M.I. Khan, A. Alsaedi, Eur. Phys. J. Plus 133, 329 (2018)

    Article  Google Scholar 

  20. T. Hayat, M. Rashid, A. Alsaedi, S. Asghar, J. Braz. Soc. Mech. Sci. Eng. 41, 86 (2019)

    Article  Google Scholar 

  21. P.M. Patil, M. Kulkarni, J.R. Tonannavar, Ind. J. Phys. (2021). https://doi.org/10.1007/s12648-021-02073-6

    Article  Google Scholar 

  22. P.M. Patil, M. Kulkarni, Rev. Mex. Fis. 66, 153 (2020)

    Article  Google Scholar 

  23. T.S. Chen, A. Mucoglu, A, ASME. J. Heat Transf. 98, 523 (1976)

    Article  Google Scholar 

  24. M.N. Bui, T. Cebeci, ASME J. Heat Transf. 107, 476 (1985)

    Article  Google Scholar 

  25. T.Y. Wang, C. Kleinstruver, J. Heat Transf. 111, 393 (1989)

    Article  Google Scholar 

  26. H.S. Takhar, A.J. Chamkha, G. Nath, Heat Mass Transf. 6, 237 (2000)

    Article  ADS  Google Scholar 

  27. P.J. Singh, S. Roy, Int. J. Heat Mass Transf. 51, 717 (2008)

    Article  Google Scholar 

  28. P.M. Patil, S. Roy, I. Pop, Compu. Fluids 56, 17 (2012)

    Article  Google Scholar 

  29. P.M. Patil, S. Roy, I. Pop, Chem. Eng. Commun. 200, 398 (2013)

    Article  Google Scholar 

  30. A. Khan, D. Khan, I. Khan, F. Ali, F. Karim, M. Imran, Sci. Rep. 8, 8645 (2018)

    Article  ADS  Google Scholar 

  31. D. Khan, A. Khan, I. Khan, F. Ali, F. Karim, I. Tlili, Sci. Rep. 9, 400 (2019)

    Article  ADS  Google Scholar 

  32. D. Khan, A. Rahman, G. Ali, P. Kumam, A. Kaewkhao, I. Khan, Water 13, 1587 (2021)

    Article  Google Scholar 

  33. D. Khan, G. Ali, P. Kumam, A. Rahman, Case St. Therm. Eng. 30, 101764 (2022)

    Article  Google Scholar 

  34. M. Zhao, S. Wang, Q. Zhang, Appl. Math. Mod. 38, 2345 (2014)

    Article  Google Scholar 

  35. Z.H. Khan, J.R. Culham, W.A. Khan, I. Pop, Int. J. Therm. Sci. 90, 53 (2015)

    Article  Google Scholar 

  36. M. Ghalambaz, F. Moattar, A. Karbassi, M.A. Sheremet, I. Pop, Trans. Por Media 116, 473 (2017)

    Article  Google Scholar 

  37. P.M. Patil, M. Roy, M.S. Roy, E. Momoniat, Int. J. Heat Mass Transf. 117, 287 (2018)

    Article  Google Scholar 

  38. P.M. Patil, M. Kulkarni, J.R. Tonannavar, Int. Commun. Heat Mass Transf. 128, 105561 (2021)

    Article  Google Scholar 

  39. Z.H. Khan, W.A. Khan, J. Tang, M.A. Sheremet, Chem. Eng. Sci. 228, 115980 (2020)

    Article  Google Scholar 

  40. P.M. Patil, I. Pop, Heat Mass Transf. 47, 1453 (2011)

    Article  ADS  Google Scholar 

  41. P.M. Patil, Int. J. Num. Meth. Heat Fluid Flow 22, 287 (2012)

    Article  Google Scholar 

  42. P.M. Patil, A.J. Chamkha, S. Roy, Meccanica 47, 483 (2012)

    Article  MathSciNet  Google Scholar 

  43. P.M. Patil, S. Roy, E. Momoniat, Int. J. Heat Mass Transf. 100, 482 (2016)

    Article  Google Scholar 

  44. P.M. Patil, D.N. Latha, S. Roy, E. Momoniat, Ain. Shams Eng. J. 8, 697 (2017)

    Article  Google Scholar 

  45. H. Schlichting, K. Gersten, Boundary layer theory (Springer, New York, 2000)

    Book  MATH  Google Scholar 

  46. J. Buongiorno, J. Heat Transf. 128, 140 (2006)

    Article  Google Scholar 

  47. R.S. Varga, Matrix iterative analysis (Prentice-Hall, Englewood Cliffs, NJ, 2000)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Patil.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Appendix

Appendix

$$ \begin{gathered} \begin{array}{*{20}c} {A_{1}^{i} = \frac{{\xi + f + \xi f_{\xi } }}{{(1 + \xi \eta )}};} & {\,A_{2}^{i} = - \frac{{(\xi F_{\xi } + 8\text{Re} M^{2} )}}{{(1 + \xi \eta )}};} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {A_{3}^{i} = - \frac{{\xi F}}{{(1 + \xi \eta )}};} & {A_{4}^{i} \, = \,\frac{{8Ri\,(1 + 2\gamma G)}}{{(1 + \xi \eta \,)}};} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {A_{5}^{i} = \frac{{8RiNc_{1} (1 + 2\beta _{{c1}} H)}}{{(1 + \xi \eta \,)}}\,;} & {A_{6}^{i} = \frac{{8RiNc_{2} (1 + 2\beta _{{c2}} P)}}{{(1 + \xi \eta \,)}}\,;} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {A_{7}^{i} = - \frac{{8RiNr}}{{(1 + \xi \,\eta )}}\,;} & {\,A_{8}^{i} \, = \,\,\, - \frac{1}{{(1 + \xi \,\eta )}}(8M^{2} \text{Re} \, + \xi F_{\xi } F + 8Ri(\gamma G^{2} + Nc_{1} \beta _{{c1}} H^{2} + Nc_{2} \beta _{{c2}} R^{2} ))\,;} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {B_{1}^{i} \, = \,\,\frac{\xi }{{(1\, + \,\xi \eta )}} + \,\,\frac{{(f\, + \,\xi \,f_{\xi } )}}{{(1\, + \,\xi \,\eta )}}\Pr + \,2\Pr Nt\,G_{\eta } + \Pr Nb\,S_{\eta } \,;\,\,} & {B_{2}^{i} \, = \,\, - \frac{{\xi \Pr F}}{{(1\, + \,\xi \,\eta )}}\,;\,} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {B_{3}^{i} \, = \, - \left\{ {\frac{{\,\xi Pr\,G_{\xi } \, + 4\Pr \text{Re} \,EcM^{2} (1 - F/2)}}{{(1 + \xi \eta )}}} \right\}\,;} & {B_{4}^{i} = \Pr Nb\,G_{\eta } \,;\,} \\ \end{array} \hfill \\ B_{5}^{i} \, = \,\,\Pr Nt\,G_{\eta }^{2} + \Pr Nb\,S_{\eta } G_{\eta } - \frac{{\xi \Pr \,G_{\xi } F}}{{(1 + \xi \eta )}} - \frac{{4\Pr \text{Re} EcM^{2} (1 - F^{2} /4)}}{{(1 + \xi \eta )}}; \hfill \\ \begin{array}{*{20}c} {C_{1}^{i} = \frac{\xi }{{(\,1\, + \,\xi \,\eta )}} + \frac{{Sc_{1} (f + \,\xi \,f_{\xi } )}}{{(\,1\, + \,\xi \,\eta )}};} & {C_{2}^{i} = - \frac{{4\text{Re} \,Kc_{1} Sc_{1} }}{{(\,1\, + \,\xi \,\eta )}}(1 + \lambda G)^{{n_{{\,1}} }} e^{{ - E\,_{1} /(1 + \lambda G)}} ;} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {C_{3}^{i} = - \,\,\frac{{\xi \,Sc_{1} }}{{(\,1\, + \,\xi \,\eta )}}\,\,F\,;} & {C_{4}^{i} = - \frac{{\xi Sc_{1} }}{{\left( {1 + \xi \eta } \right)}}H_{\xi } ;} \\ \end{array} \hfill \\ C_{5}^{i} = C_{4}^{i} F - \frac{{4\text{Re} \,Kc_{1} Sc_{1} }}{{(\,1\, + \,\xi \,\eta )}}(1 + \lambda G)^{{n_{{\,1}} }} e^{{ - E\,_{1} /(1 + \lambda G)}} \left[ {E_{1} + n_{{\,1}} (1 + \lambda G)} \right]; \hfill \\ \begin{array}{*{20}c} {D_{1}^{i} = \frac{\xi }{{(\,1\, + \,\xi \,\eta )}} + \frac{{Sc_{2} (f + \,\xi \,f_{\xi } )}}{{(\,1\, + \,\xi \,\eta )}};} & {D_{2}^{i} = - \frac{{4\text{Re} \,Kc_{2} Sc_{2} }}{{(\,1\, + \,\xi \,\eta )}}(1 + \lambda G)^{{n_{{\,2}} }} e^{{ - E\,_{2} /(1 + \lambda G)}} ;} \\ \end{array} \hfill \\ D_{3}^{i} = - \,\,\frac{{\xi \,Sc_{1} }}{{(\,1\, + \,\xi \,\eta )}}\,\,F\,; \hfill \\ \begin{array}{*{20}c} {D_{4}^{i} = - \frac{{\xi Sc_{1} }}{{\left( {1 + \xi \eta } \right)}}H_{\xi } ;} & {D_{5}^{i} = D_{4}^{i} F - \frac{{4\text{Re} \,Kc_{2} Sc_{2} }}{{(\,1\, + \,\xi \,\eta )}}(1 + \lambda G)^{{n_{{\,2}} }} e^{{ - E_{2} /(1 + \lambda G)}} \left[ {E_{2} + n_{{\,2}} (1 + \lambda G)} \right];} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {E_{1}^{i} = \,\,\frac{\xi }{{(1\, + \,\xi \eta )}} + \frac{{Le\,(f + \,\,\,\xi \,f_{\xi } )}}{{(1\, + \,\xi \eta )}};} & {E_{2}^{i} = - \,\,\frac{{\xi Le}}{{(1 + \xi \eta )}}\,\,F\,;} & {E_{3}^{i} = - \,\,\,\frac{{\xi \,Le}}{{(1 + \xi \eta )}}S_{\xi } \,;} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {E_{4}^{i} = \frac{{Nt}}{{Nb}}\frac{\xi }{{(1 + \xi \eta )}};} & {E_{5}^{i} = \frac{{Nt}}{{Nb}};} & {E_{6}^{i} = F_{3}^{i} F.} \\ \end{array} \hfill \\ \end{gathered} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, P.M., Kulkarni, M. Influence of activation energy and applied magnetic field on triple-diffusive quadratic mixed convective nanoliquid flow about a slender cylinder. Eur. Phys. J. Plus 137, 520 (2022). https://doi.org/10.1140/epjp/s13360-022-02647-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02647-1

Navigation