Skip to main content

Advertisement

Log in

Activation Energy Impact on Chemically Reacting Eyring–Powell Nanofluid Flow Over a Stretching Cylinder

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The purpose of this research is to scrutinize the stagnation point flow of chemically reacting Powell–Eyring nanofluid past an inclined cylinder using the impact of activation energy with Cattaneo–Christov heat flux. Flow formulation is developed by considering the impact of nonlinear thermal radiation, binary chemical reaction, non-Fourier heat flux and the Buongiorno nanofluid model. Proper transforms yield highly nonlinear differential systems, which are solved using shooting procedure with the fourth-order R–K (Runge–Kutta) method. Comparative reviews between the formerly published literature and the current data are made for specific cases, which are inspected to be in a tremendous agreement. The narrative reviews show that the current research problem has not premeditated so far. Effectiveness of innumerable parameters is publicized graphically on velocity, temperature and concentration curves cases of various angles 0° horizontal cylinder, 45° inclined cylinder and 90° vertical cylinder. It is manifested that fluid velocity promotes with the larger values of velocity ratio. It is also noticed that concentration declines when destructive chemical reaction enhances, whilst the antithesis direction is noticed in the condition of the generative chemical reaction. Furthermore, the stream lines are closer to the cylindrical wall when α = 90° and the stream lines are far away to the cylindrical wall when α = 90°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

\( A \) :

Ratio of the velocities (stagnation point)

\( A_{1} \) :

First Rivlin–Ericksen tensor

\( B \) :

Total magnetic field

\( B_{0} \) :

Magnetic field

\( c \) :

Fluid parameter

\( C_{f} \) :

Skin friction coefficient

\( C \) :

Concentration of the fluid \( \left( {{\text{kmol}}\,{\text{m}}^{ - 3} } \right) \)

\( C_{0} \) :

Reference concentration

\( C_{w} \) :

Stretching cylinder concentration

\( C_{\infty } \) :

Concentration of the ambient fluid

\( c_{p} \) :

Specific heat at constant pressure

\( D_{B} \) :

Brownian motion diffusion coefficient

\( E_{\text{a}} \) :

Activation energy (J kg−1 K−1)

\( E \) :

Non-dimensional activation energy

\( F \) :

Dimensionless velocity

Gc:

Solutal Grashof number

Gr:

Grashof number

\( J \) :

Current density

\( k \) :

Thermal conductivity (W m−1 K−1)

\( k^{*} \) :

Mean absorption coefficient

\( k_{\text{r}} \) :

Reaction rate

\( l \) :

Characteristic length

\( M \) :

Magnetic parameter

\( n \) :

Unitless exponent fitted rate constant

Nt:

Thermophoresis parameter

Nb:

Brownian motion parameter

\( {\text{Nu}}_{x} \) :

Local Nusselt number

\( p \) :

Fluid pressure

\( \Pr \) :

Prandtl number

\( \text{Re}_{x} \) :

Local Reynolds number

\( R \) :

Radiation parameter

\( S \) :

Deviatoric part of stress tensor

Sc:

Schmidt number

\( {\text{Sh}}_{x} \) :

Local Sherwood number

\( T_{0} \) :

Reference temperature

\( T \) :

Temperature of the fluid (K)

\( T_{\infty } \) :

Temperature of the ambient fluid

\( T_{w} \) :

Cylinder temperature

\( u_{e} \) :

Free stream velocity

\( U_{0} \) :

Reference velocity

\( r \) :

Direction normal to the surface

\( x \) :

Direction along the surface

\( u,\,v \) :

Velocity components in \( x \) and \( r \) directions (ms−1)

\( \upsilon \) :

Kinematic viscosity

\( \zeta \) :

Similarity variable

\( \alpha \) :

Acute angle

\( \beta \) :

Fluid parameter

\( \beta_{\text{C}} \) :

Coefficient of concentration expansion

\( \beta_{\text{T}} \) :

Coefficient of thermal expansion

\( \mu \) :

Dynamic viscosity of the fluid

\( \delta ,\,\varepsilon \) :

Fluid parameters

\( \varPhi \) :

Dimensionless concentration

\( \rho \) :

Density of the fluid (kg m−3)

\( \gamma \) :

Curvature parameter

\( \varGamma \) :

Chemical reaction parameter

\( \varTheta \) :

Dimensionless temperature

\( \varTheta_{w} \) :

Temperature ratio parameter

\( \sigma^{*} \) :

Stefan–Boltzmann constant

\( \sigma \) :

Electrical conductivity of the fluid

\( \varLambda \) :

Non-dimensional thermal relaxation time

\( \lambda_{2} \) :

Relaxation time for heat flux

\( \tau_{w} \) :

Surface shear stress (N m−2)

\( w \) :

Conditions at the wall

\( \infty \) :

Ambient condition

′:

Differentiation with respect to \( \zeta \)

References

  1. Alfvén, H.: Existence of electromagnetic-hydrodynamic waves. Nature 150(3805), 405–406 (1942)

    Google Scholar 

  2. Kumari, M.; Takhar, H.S.; Nath, G.: MHD flow and heat transfer over a stretching surface with prescribed wall temperature or heat flux. Warme Und Stoffubertragung 25, 331–336 (1990)

    Google Scholar 

  3. Andersson, H.I.: MHD flow of a viscoelastic fluid past a stretching surface. Acta Mech. 95(1–4), 227–230 (1992)

    MathSciNet  MATH  Google Scholar 

  4. Bhatti, M.M.; Abbas, T.; Rashidi, M.M.; Ali, M.E.S.; Yang, Z.: Entropy generation on MHD eyring–powell nanofluid through a permeable stretching surface. Entropy 18, 1–14 (2016)

    MathSciNet  Google Scholar 

  5. Attia, H.A.: Unsteady MHD flow near a rotating porous disk with uniform suction or injection. Fluid Dyn. Res. 23, 283–290 (1998)

    Google Scholar 

  6. Afify, A.: MHD free convective flow and mass transfer over a stretching sheet with chemical reaction. Heat Mass Transf. 40(6–7), 495–500 (2004)

    Google Scholar 

  7. Abo-Eldahab, E.M.; Salem, A.M.: MHD Flow and heat transfer of non-Newtonian power-law fluid with diffusion and chemical reaction on a moving cylinder. Heat Mass Transf. 41(8), 703–708 (2005)

    Google Scholar 

  8. Srinivas, S.; Reddy, P.B.A.; Prasad, B.S.R.V.: Effects of chemical reaction and thermal radiation on MHD flow over an inclined permeable stretching surface with non-uniform heat source/sink: an application to the dynamics of blood flow. J. Mech. Med. Biol. 14(05), 1450067 (2014)

    Google Scholar 

  9. Reddy, P.B.A.: MHD boundary layer slip flow of a Casson fluid over an exponentially stretching surface in the presence of thermal radiation and chemical reaction. J. Naval Arch. Mar. Eng. 3, 165–177 (2016)

    Google Scholar 

  10. Vajravelu, K.; Prasad, K.V.; Santhi, S.R.: Axisymmetric magneto-hydrodynamic (MHD) flow and heat transfer at a non-isothermal stretching cylinder. Appl. Math. Comput. 219(8), 3993–4005 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Ghadikolaeia, S.S.; Hosseinzadehb, Kh; Ganji, D.D.: Analysis of unsteady MHD Eyring–Powell squeezing flow in stretching channel with considering thermal radiation and Joule heating effect using AGM. Case Stud. Therm. Eng. 10, 579–594 (2017)

    Google Scholar 

  12. Hussain, A.; Malik, M.Y.; Salahuddin, T.; Bilal, S.; Awais, M.: Combined effects of viscous dissipation and Joule heating on MHD Sisko nanofluid over a stretching cylinder. J. Mol. Liq. 231, 341–352 (2017)

    Google Scholar 

  13. Lu, D.; Ramzan, M.; Ul Huda, N.; Chung, J.D.; Farooq, U.: Nonlinear radiation effect on MHD Carreau nanofluid flow over a radially stretching surface with zero mass flux at the surface. Sci. Rep. 8(1), 1–17 (2018)

    Google Scholar 

  14. Rezaie, M.R.; Norouzi, M.: Numerical investigation of MHD flow of non-Newtonian fluid over confined circular cylinder: a lattice Boltzmann approach. J. Braz. Soc. Mech. Sci. Eng. 40(4), 185 (2018)

    Google Scholar 

  15. Bhatti, M.M.; Mishra, S.R.; Abbas, T.; Rashidi, M.M.: A mathematical model of MHD nanofluid flow having gyrotactic microorganisms with thermal radiation and chemical reaction effects. Neural Comput. Appl. 30(4), 1237–1249 (2018)

    Google Scholar 

  16. Pop, S.; Grosan, T.; Pop, I.: Radiation effects on the flow near the stagnation point of a stretching sheet. Tech. Mech. 25(2), 100–106 (2004)

    Google Scholar 

  17. Sheikholeslami, M.; Li, Z.; Shamlooei, M.: Nanofluid MHD natural convection through a porous complex shaped cavity considering thermal radiation. Phys. Lett. Sect. A Gener. At. Solid State Phys. 382(24), 1615–1632 (2018)

    MathSciNet  Google Scholar 

  18. Kumar, R.; Sood, S.; Sheikholeslami, M.; Shehzad, S.A.: Nonlinear thermal radiation and cubic autocatalysis chemical reaction effects on the flow of stretched nanofluid under rotational oscillations. J. Colloid Interface Sci. 505, 253–265 (2017)

    Google Scholar 

  19. Reddy, S.R.R.; Bala Anki Reddy, P.; Suneetha, S.: Magnetohydrodynamic flow of blood in a permeable inclined stretching surface with viscous dissipation, non-uniform heat source/sink and chemical reaction. Front. Heat Mass Transf. 10(22), 1–10 (2018)

    Google Scholar 

  20. Li, Z.; Sheikholeslami, M.; Chamkha, A.J.; Raizah, Z.A.; Saleem, S.: Control volume finite element method for nanofluid MHD natural convective flow inside a sinusoidal annulus under the impact of thermal radiation. Comput. Methods Appl. Mech. Eng. 338, 618–633 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Bala Anki Reddy, P.: Magnetohydrodynamic flow of a Casson fluid over an exponentially inclined permeable stretching surface with thermal radiation and chemical reaction. Ain Shams Eng. J. 7, 593–602 (2016)

    Google Scholar 

  22. Nasir, S.; Islam, S.; Gul, T.; Khan, Z.S.; Khan, M.A.; Khan, W.; Khan, S.: Three-dimensional rotating flow of MHD single wall carbon nanotubes over a stretching sheet in presence of thermal radiation. Appl. Nanosci. 8, 1361–1378 (2018)

    Google Scholar 

  23. Sheikholeslami, M.; Rokni, H.B.: Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. Int. J. Heat Mass Transf. 118, 823–831 (2018)

    Google Scholar 

  24. Srinivas, S.; Reddy, P.B.A.; Prasad, B.S.R.V.: Non-Darcian unsteady flow of a micropolar fluid over a porous stretching sheet with thermal radiation and chemical reaction. Heat Transf. Asian Res. 44(2), 172–187 (2015)

    Google Scholar 

  25. Najib, N.; Bachok, N.; Arifin, N.M.; Ishak, A.: Stagnation point flow and mass transfer with chemical reaction past a stretching/shrinking cylinder. Sci. Rep. 4, 1–7 (2014)

    Google Scholar 

  26. Ullah, I.; Shafie, S.; Makinde, O.D.; Khan, I.: Unsteady MHD Falkner–Skan flow of Casson nanofluid with generative/destructive chemical reaction. Chem. Eng. Sci. 172, 694–706 (2017)

    Google Scholar 

  27. Azam, M.; Khan, M.; Alshomrani, A.S.: Unsteady radiative stagnation point flow of MHD Carreau nanofluid over expanding/contracting cylinder. Int. J. Mech. Sci. 130(May), 64–73 (2017)

    Google Scholar 

  28. Mustafa, M.; Mushtaq, A.; Hayat, T.; Alsaedi, A.: Numerical study of MHD viscoelastic fluid flow with binary chemical reaction and Arrhenius activation energy. Int. J. Chem. React. Eng. 15(1), 127–135 (2017)

    Google Scholar 

  29. Makinde, O.D.; Olanrewaju, P.O.: Unsteady mixed convection with Soret and Dufour effects past a porous plate moving through a binary mixture of chemically reacting fluid. Chem. Eng. Commun. 198(7), 920–938 (2011)

    Google Scholar 

  30. Khan, Muhammad Ijaz; Qayyum, S.; Hayat, T.; Waqas, M.; Khan, M.I.; Alsaedi, A.: Entropy generation minimization and binary chemical reaction with Arrhenius activation energy in MHD radiative flow of nanomaterial. J. Mol. Liq. 259, 274–283 (2018)

    Google Scholar 

  31. Khan, M.Ijaz; Waqas, M.; Hayat, T.; Al-saedi, A.: Magneto-hydrodynamical numerical simulation of heat transfer in MHD stagnation point flow of Cross fluid model towards a stretched surface. Phys. Chem. Liq. 00(00), 1–12 (2017)

    Google Scholar 

  32. Mishra, A.; Kumar, M.: Ohmic-viscous dissipation and heat generation/absorption effects on MHD nanofluid flow over a stretching cylinder with suction/injection. Adv. Comput. Commun. Technol. 702, 45–55 (2019)

    Google Scholar 

  33. Reddy, S.R.R.; Bala Anki Reddy, P.: Bio-mathematical analysis for the stagnation point flow over a non-linear stretching surface with the second order velocity slip and titanium alloy nanoparticle. Front. Heat Mass Transf. 10(13), 1–11 (2018)

    Google Scholar 

  34. Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2006)

    Google Scholar 

  35. Gireesha, B.J.; Mahanthesh, B.; Krupalakshmi, K.L.: Hall effect on two-phase radiated flow of magneto-dusty-nanoliquid with irregular heat generation/consumption. Results Phys. 7, 4340–4348 (2017)

    Google Scholar 

  36. Lin, Y.; Zheng, L.; Zhang, X.; Ma, L.; Chen, G.: MHD pseudo-plastic nanofluid unsteady flow and heat transfer in a finite thin film over stretching surface with internal heat generation. Int. J. Heat Mass Transf. 84, 903–911 (2015)

    Google Scholar 

  37. Ashlin, T.S.; Mahanthesh, B.: Exact solution of non-coaxial rotating and non-linear convective flow of Cu–Al2O3–H2O hybrid nanofluids over an infinite vertical plate subjected to heat source and radiative heat. J. Nanofluids 8, 781–794 (2019)

    Google Scholar 

  38. Lin, Y.; Jiang, Y.: Effects of Brownian motion and thermophoresis on nanofluids in a rotating circular groove: a numerical simulation. Int. J. Heat Mass Transf. 123, 569–582 (2018)

    Google Scholar 

  39. Mahanthesh, B.; Shashikumar, N.S.; Gireesha, B.J.; Animasaun, I.L.: Effectiveness of Hall current and exponential heat source on unsteady heat transport of dusty TiO2–EO nanoliquid with nonlinear radiative heat. J. Comput. Des. Eng. 6, 551–561 (2019)

    Google Scholar 

  40. Reddy, S.R.R.; Reddy, P.B.A.; Bhattacharyya, K.: Effect of nonlinear thermal radiation on 3D magneto slip flow of Eyring–Powell nanofluid flow over a slendering sheet with binary chemical reaction and Arrhenius activation energy. Adv. Powder Technol. 30, 3203–3213 (2019)

    Google Scholar 

  41. Mahapatra, T.R.; Gupta, A.S.: Heat transfer in stagnation-point flow towards a stretching sheet. Heat Mass Transf. 38(6), 517–521 (2002)

    Google Scholar 

  42. Grubka, L.J.; Bobba, K.M.: Heat transfer characteristics of a continuous, stretching surface with variable temperature. J. Heat Transf. 107(1985), 248–250 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Rashad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, S.R.R., Bala Anki Reddy, P. & Rashad, A.M. Activation Energy Impact on Chemically Reacting Eyring–Powell Nanofluid Flow Over a Stretching Cylinder. Arab J Sci Eng 45, 5227–5242 (2020). https://doi.org/10.1007/s13369-020-04379-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04379-9

Keywords

Navigation