Skip to main content
Log in

Diffusive patterns in a predator–prey system with fear and hunting cooperation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Cooperation among species is a ubiquitous behavior to better understand the system dynamics from an ecological perspective. Hunting cooperation among predators can impose fear effects on the prey population, thereby decreasing the prey’s birth rate. Considering this fact, we propose a model that incorporates hunting cooperation among predators and the fear-induced birth reduction in the prey population. We have done the complete dynamical analysis, including boundedness of solutions, persistence of the system, existence of all equilibria and their local and global stability, existence of Hopf bifurcation and its direction and stability, and existence of saddle-node bifurcation. We analyze Hopf bifurcation with respect to the hunting cooperation parameter and saddle-node bifurcation by varying the predation rate. Moreover, we analyze the multi-stability of the system and observe that bi-stability occurs in two different scenarios. In the spatially extended system, we provide a detailed stability analysis and obtain the conditions for Turing instability. Various Turing patterns such as spots, holes, and stripes are obtained and discussed the biological significance of these patterns for the two-dimensional spatial model. We performed numerical simulations to validate our analytical results for both spatial and non-spatial models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors comment: The data that support the findings of this study are available within the article.]

References

  1. M.T. Alves, F.M. Hilker, Hunting cooperation and Allee effects in predators. J. Theor. Biol. 419, 13–22 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  2. L. Berec, Impacts of foraging facilitation among predators on predator–prey dynamics. Bull. Math. Biol. 72(1), 94–121 (2010)

    Article  MathSciNet  Google Scholar 

  3. C. Boesch, Cooperative hunting in wild chimpanzees. Anim. Behav. 48(3), 653–667 (1994)

    Article  Google Scholar 

  4. S. Creel, D. Christianson, Relationships between direct predation and risk effects. Trends Ecol. Evol. 23(4), 194–201 (2008)

    Article  Google Scholar 

  5. S. Creel, N.M. Creel, Communal hunting and pack size in African wild dogs, Lycaon pictus. Anim. Behav. 50(5), 1325–1339 (1995)

    Article  Google Scholar 

  6. W. Cresswell, Predation in bird populations. J. Ornithol. 152(1), 251–263 (2011)

    Article  Google Scholar 

  7. S. Djilali, C. Cattani, Patterns of a superdiffusive consumer-resource model with hunting cooperation functional response. Chaos Solitons Fractals 151, 111258 (2021)

    Article  MathSciNet  Google Scholar 

  8. B. Dubey, B. Das, J. Hussain, A predator–prey interaction model with self and cross-diffusion. Ecol. Model. 141(1–3), 67–76 (2001)

    Article  Google Scholar 

  9. B. Dubey, N. Kumari, R.K. Upadhyay, Spatiotemporal pattern formation in a diffusive predator-prey system: an analytical approach. J. Appl. Math. Comput. 31(1), 413–432 (2009)

    Article  MathSciNet  Google Scholar 

  10. D.P. Hector, Cooperative hunting and its relationship to foraging success and prey size in an avian predator. J. Ethol. 73(3), 247–257 (1986)

    Article  Google Scholar 

  11. C.S. Holling, Some characteristics of simple types of predation and parasitism1. Can. Entomol. 91(7), 385–398 (1959)

    Article  Google Scholar 

  12. V. Kumar, N. Kumari, Bifurcation study and pattern formation analysis of a tritrophic food chain model with group defense and Ivlev-like nonmonotonic functional response. Chaos Solitons Fractals 147, 110964 (2021)

    Article  MathSciNet  Google Scholar 

  13. S.A. Levin, L.A. Segel, Hypothesis for origin of planktonic patchiness. Nature 259(5545), 659–659 (1976)

    Article  ADS  Google Scholar 

  14. S.L. Lima, Nonlethal effects in the ecology of predator–prey interactions. Bioscience 48(1), 25–34 (1998)

    Article  Google Scholar 

  15. J. Liu, B. Liu, P. Lv, T. Zhang, An eco-epidemiological model with fear effect and hunting cooperation. Chaos Solitons Fractals 142, 110494 (2021)

    Article  MathSciNet  Google Scholar 

  16. A.B. Medvinsky, S.V. Petrovskii, I.A. Tikhonova, H. Malchow, B.-L. Li, Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev. Soc. Ind. Appl. Math. 44(3), 311–370 (2002)

    MathSciNet  MATH  Google Scholar 

  17. K. Nitu, M. Nishith, Positive solutions and pattern formation in a diffusive tritrophic system with Crowley-martin functional response. Nonlinear Dyn. 100(1), 763–784 (2020)

    Article  Google Scholar 

  18. A. Okubo, S.A. Levin, Diffusion and Ecological Problems: Modern Perspectives, vol. 14 (Springer, New York, 2001)

    Book  Google Scholar 

  19. C. Packer, D. Scheel, A.E. Pusey, Why lions form groups: food is not enough. Am. Nat. 136(1), 1–19 (1990)

    Article  Google Scholar 

  20. S. Pal, N. Pal, S. Samanta, J. Chattopadhyay, Effect of hunting cooperation and fear in a predator–prey model. Ecol. Complex. 39, 100770 (2019)

    Article  Google Scholar 

  21. S. Pal, N. Pal, S. Samanta, J. Chattopadhyay, Fear effect in prey and hunting cooperation among predators in a Leslie–Gower model. Math. Biosci. Eng. 16(5), 5146–5179 (2019)

    Article  MathSciNet  Google Scholar 

  22. R.D. Parshad, N. Kumari, A.R. Kasimov, H.A. Abderrahmane, Turing patterns and long-time behavior in a three-species food-chain model. Math. Biosci. 254, 83–102 (2014)

    Article  MathSciNet  Google Scholar 

  23. L. Perko, Differential Equations and Dynamical Systems (Springler, New York, 2001)

    Book  Google Scholar 

  24. L. Pribylova, A. Peniaskova, Foraging facilitation among predators and its impact on the stability of predator–prey dynamics. Ecol. Complex. 29, 30–39 (2017)

    Article  Google Scholar 

  25. S.K. Sasmal, Population dynamics with multiple Allee effects induced by fear factors-a mathematical study on prey–predator interactions. Appl. Math. Model. 64, 1–14 (2018)

    Article  MathSciNet  Google Scholar 

  26. S.K. Sasmal, J. Banerjee, Y. Takeuchi, Dynamics and spatio-temporal patterns in a prey–predator system with aposematic prey. Math. Biosci. Eng. 16(5), 3864–3884 (2019)

    Article  MathSciNet  Google Scholar 

  27. S.K. Sasmal, Y. Takeuchi, Dynamics of a predator-prey system with fear and group defense. J. Math. Anal. Appl. 481(1), 123471 (2020)

    Article  MathSciNet  Google Scholar 

  28. S.K. Sasmal, Y. Takeuchi, Modeling the Allee effects induced by cost of predation fear and its carry-over effects. J. Math. Anal. Appl. 505(2), 125485 (2022)

    Article  MathSciNet  Google Scholar 

  29. L.A. Segel, J.L. Jackson, Dissipative structure: an explanation and an ecological example. J. Theor. Biol. 37(3), 545–559 (1972)

    Article  ADS  Google Scholar 

  30. A.M. Turing, The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 237(641), 37–72 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  31. R.K. Upadhyay, N. Kumari, V. Rai, Wave of chaos in a diffusive system: generating realistic patterns of patchiness in plankton-fish dynamics. Chaos Solitons Fractals 40(1), 262–276 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  32. R.K. Upadhyay, N.K. Thakur, B. Dubey, Nonlinear non-equilibrium pattern formation in a spatial aquatic system: effect of fish predation. J. Biol. Syst. 18(01), 129–159 (2010)

    Article  MathSciNet  Google Scholar 

  33. R.K. Upadhyay, W. Wang, N.K. Thakur, Spatiotemporal dynamics in a spatial plankton system. Math. Model. Nat. Phenom. 5(5), 102–122 (2010)

    Article  MathSciNet  Google Scholar 

  34. X. Wang, L. Zanette, X. Zou, Modelling the fear effect in predator–prey interactions. J. Math. Biol. 73(5), 1179–1204 (2016)

    Article  MathSciNet  Google Scholar 

  35. X. Wang, X. Zou, Modeling the fear effect in predator–prey interactions with adaptive avoidance of predators. Bull. Math. Biol. 79(6), 1325–1359 (2017)

    Article  MathSciNet  Google Scholar 

  36. R. Yang, J. Wei, Bifurcation analysis of a diffusive predator-prey system with nonconstant death rate and Holling III functional response. Chaos Solitons Fractals 70, 1–13 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  37. L.Y. Zanette, A.F. White, M.C. Allen, M. Clinchy, Perceived predation risk reduces the number of offspring songbirds produce per year. Science 334(6061), 1398–1401 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for the critical review and constructive comments that enhanced the quality of the manuscript. Author Anshu acknowledges the Research Fellowship received from UGC, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balram Dubey.

Appendix

Appendix

1.1 Proof of Theorem 8

Proof

To find the stability and direction of Hopf bifurcation, we calculate the first Lyapunov coefficient. Let \(u = x -x^*\) and \(v = y-y^*\), then system (2) becomes

$$\begin{aligned} \frac{\mathrm{d}u}{\mathrm{d}t}= & {} \frac{r(u+x^*)}{1+k\alpha _1(v+y^*)} - r_0(u+x^*) - r_1(u+x^*)^2 - (\alpha _0+\alpha _1(v+y^*))(u+x^*)(v+y^*) := f(u,v).\\ \frac{\mathrm{d}v}{\mathrm{d}t}= & {} c(\alpha _0+\alpha _1(v+y^*))(u+x^*)(v+y^*)-[\frac{\gamma +\delta (v+y^*)}{1+(v+y^*)}](v+y^*) :=g(u,v). \end{aligned}$$

Now, expanding the above system in Taylor’s series at \((u,v)=(0,0)\) up to third order, we get

$$\begin{aligned} \begin{array}{ccc} \frac{\mathrm{d}u}{\mathrm{d}t} &{}=&{} J_{11}u + J_{12}v + f_1(u,v), \\ \frac{\mathrm{d}v}{\mathrm{d}t} &{}=&{} J_{21}u + J_{22}v + g_1(u,v), \end{array} \end{aligned}$$
(18)

\(f_1(u,v)\) and \(g_1(u,v)\) are the higher-order terms of u and v, given by

$$\begin{aligned} \begin{array}{ccc} f_1(u,v) &{}=&{} f_{uu}u^2 + f_{uv}uv + f_{vv}v^2 + f_{uuu}u^3 + f_{uuv}u^2v + f_{uvv}uv^2 + f_{vvv}v^3, \\ g_1(u,v) &{}=&{} g_{uu}u^2 + g_{uv}uv + g_{vv}v^2 + g_{uuu}u^3 + g_{uuv}u^2v + g_{uvv}uv^2 + g_{vvv}v^3, \end{array} \end{aligned}$$

where

$$\begin{aligned} f_u&= J_{11} = \frac{r}{1+k\alpha _1 y^*} - r_0 - 2r_1x^* - (\alpha _0+\alpha _1 y^*)y^*, \\ f_v&= J_{12} = -\frac{rk\alpha _1 x^*}{(1+k\alpha _1 y^*)^2} -x^*(\alpha _0+2\alpha _1y^*), \\ f_{uu}&= -2r_1, \\ f_{uv}&= [\frac{-rk\alpha _1}{(1+k\alpha _1y^*)^2}-(\alpha _0+2\alpha _1y^*)],\\ f_{vv}&= 2x^*\alpha _1(\frac{rk^2\alpha _1}{(1+k\alpha _1y^*)^3}-1), \\ f_{uuu}&= 0, \\ f_{uuv}&= 0, \\ f_{uvv}&= 2(\frac{rk^2\alpha _1^2}{(1+k\alpha _1y^*)^3}-\alpha _1),\\ f_{vvv}&= -\frac{6rk^3\alpha _1^3x^*}{(1+k\alpha _1 y^*)^4}, \end{aligned}$$

and

$$\begin{aligned} g_u&= J_{21} = c(\alpha _0+\alpha _1y^*)y^*, \\ g_v&= J_{22} = cx^*(2\alpha _1y^*+\alpha _0)-\frac{\gamma +\delta y^*}{1+y^*}-y^*\frac{\delta -\gamma }{(1+y^*)^2}, \\ g_{uu}&= 0, \\ g_{uv}&= c(\alpha _0+2\alpha _1y^*), \\ g_{vv}&= 2(c\alpha _1x^*-\frac{\delta -\gamma }{(1+y^*)^3}),\\ g_{uuu}&= 0,\\ g_{uuv}&= 0,\\ g_{uvv}&= 2c\alpha _1,\\ g_{vvv}&= \frac{6(\delta -\gamma )}{(1+y^*)^4}. \end{aligned}$$

System (18) can be written as

$$\begin{aligned} \begin{array}{ccc} {\dot{U}} = J_{E_1^*}U + H(U), \end{array} \end{aligned}$$

where

$$\begin{aligned} U= & {} \Big (u,v\Big )^T, \\ H= & {} \Big (f_1(u,v),g_1(u,v)\Big )^T, \\= & {} \Big (f_{uu}u^2 + f_{uv}uv + f_{vv}v^2 + f_{uvv}uv^2 + f_{vvv}v^3, g_{uv}uv + g_{vv}u^2 + g_{uvv}uv^2 + g_{vvv}v^3\Big )^T. \end{aligned}$$

Now, Hopf bifurcation occurs when \(Tr(J_{E_1^*})=0\) and \(det(J_{E_1^*})>0\), i.e., at the Hopf bifurcation point, the eigenvalue will be purely imaginary, which is given by \(i\sqrt{f_ug_v-f_vg_u}\). Eigenvector corresponding to this eigenvalue \(i\sqrt{f_ug_v-f_vg_u}\) is given by \({\overline{v}} = \Big (f_v, i\sqrt{f_ug_v-f_vg_u}-f_u\Big )^T\). Now, we define \(S = \Big (Re({\overline{v}}), - Im({\overline{v}})\Big ) = \left[ \begin{array}{cc} f_v &{} 0 \\ -f_u &{} -\sqrt{f_ug_v-f_vg_u} \end{array} \right] .\) Now, let \(U = SZ\) or \(Z = S^{-1}U\), where \(Z = \Big (z_1,z_2\Big )^T\). Therefore, under this transformation, the system is reduced to

$$\begin{aligned} {\dot{Z}} = \Big (S^{-1}J_{E_1^*}S\Big )Z + S^{-1}H\Big (SZ\Big ). \end{aligned}$$

This can be written as

$$\begin{aligned} \left[ \begin{array}{cc} \dot{z_1} \\ \dot{z_2} \end{array} \right] = \left[ \begin{array}{cc} 0 &{} -\sqrt{f_ug_v-f_vg_u} \\ \sqrt{f_ug_v-f_vg_u} &{} 0 \end{array} \right] \left[ \begin{array}{cc} z_1 \\ z_2 \end{array} \right] + \left[ \begin{array}{cc} H_1(z_1,z_2) \\ H_2(z_1,z_2) \end{array} \right] , \end{aligned}$$

where \(H_1(z_1,z_2)\) and \(H_2(z_1,z_2)\) are given by

$$\begin{aligned} H_1(z_1,z_2)&= \frac{1}{f_v}\Big [f_{uu}f_v^2 z_1^2 - f_{uv}f_vz_1(f_uz_1+\sqrt{f_ug_v-f_vg_u}z_2)+f_{vv}(f_uz_1+\sqrt{f_ug_v-f_vg_u}z_2)^2 \\&\quad + f_{uvv}f_vz_1(f_uz_1+\sqrt{f_ug_v-f_vg_u}z_2)^2 - f_{vvv}(f_uz_1+\sqrt{f_ug_v-f_vg_u}z_2)^3\Big ] ,\\ H_2(z_1,z_2)&= -\frac{1}{f_v\sqrt{f_ug_v-f_vg_u}}\Big [f_u(f_{uu}f_v^2z_1^2-f_{uv}f_vz_1(f_uz_1+\sqrt{f_ug_v-f_vg_u}z_2)+f_{vv}(f_uz_1+\sqrt{f_ug_v-f_vg_u}z_2)^2\\&\quad + f_{uvv}f_vz_1(f_uz_1+\sqrt{f_ug_v-f_vg_u}z_2)^2-f_{vvv}(f_uz_1+\sqrt{f_ug_v-f_vg_u}z_2)^3)\\&\quad +f_v(-g_{uv}f_vz_1(f_uz_1+\sqrt{f_ug_v-f_vg_u}z_2)+g_{vv}(f_uz_1+\sqrt{f_ug_v-f_vg_u}z_2)^2\\&\quad +g_{uvv}f_vz_1(f_uz_1+\sqrt{f_ug_v-f_vg_u}z_2)^2 -g_{vvv}(f_uz_1+\sqrt{f_ug_v-f_vg_u}z_2)^3) \Big ]. \end{aligned}$$

The direction of Hopf bifurcation is determined by the sign of the first Lyapunov coefficient, which is given by

$$\begin{aligned} L:= & {} \frac{1}{16}\left[ \frac{\partial ^3 H_1}{\partial z_1^3} + \frac{\partial ^3 H_1}{\partial z_1\partial z_2^2} + \frac{\partial ^3 H_2}{\partial z_1^2\partial z_2} + \frac{\partial ^3 H_2}{\partial z_2^3}\right] \\&+ \frac{1}{16\sqrt{f_ug_v-f_vg_u}}\left[ \frac{\partial ^2 H_1}{\partial z_1\partial z_2}\left( \frac{\partial ^2 H_1}{\partial z_1^1} + \frac{\partial ^2 H_1}{\partial z_2^2}\right) - \frac{\partial ^2 H_2}{\partial z_1\partial z_2}\left( \frac{\partial ^2 H_2}{\partial z_1^2} + \frac{\partial ^2 H_2}{\partial z_2^2}\right) - \frac{\partial ^2 H_1}{\partial z_1^2}\frac{\partial ^2 H_2}{\partial z_1^2} + \frac{\partial ^2 H_1}{\partial z_2^2}\frac{\partial ^2 H_2}{\partial z_2^2}\right] . \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasmal, S.K., Anshu & Dubey, B. Diffusive patterns in a predator–prey system with fear and hunting cooperation. Eur. Phys. J. Plus 137, 281 (2022). https://doi.org/10.1140/epjp/s13360-022-02497-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02497-x

Navigation