Skip to main content
Log in

Critical points of regular black hole with Gauss–Bonnet effected entropy

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Thermodynamics of the new type of regular black hole associated with the cosmological constant in nonlinear electrodynamics has been investigated here. Using the modified entropy in the presence of Gauss–Bonnet coupling, the thermodynamics quantities including Hawking temperature, the first law of thermodynamics, equation of state as well as Gibbs free energy have been explored. Further, we have studied an interesting aspect of Hawking–Page phase transitions for such a black hole. Also, temperature–Gibbs free energy has been plotted against horizon radius to check the phase transitions. We use the isothermal compressibility and heat capacity to find the critical exponents and thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data, or the data will not be deposited. (There are no observational data related to this article. The necessary calculations and graphic discussion can be made available on request.)

References

  1. R. Penrose, Phys. Rev. Lett. 14, 57 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  2. R. Penrose, Riv. Nuovo Cim. 01, 252 (1969)

    ADS  Google Scholar 

  3. S.W. Hawking, R. Penrose, Proc. R. Soc. Lond. A 314, 529 (1970)

    Article  ADS  Google Scholar 

  4. S.W. Hawking, Proc. R. Soc. Lond. A 294, 511 (1966)

    Article  ADS  Google Scholar 

  5. S.W. Hawking, Proc. R. Soc. Lond. A 295, 490 (1966)

    Article  ADS  Google Scholar 

  6. S.W. Hawking, Proc. R. Soc. Lond. A 300, 187 (1967)

    Article  ADS  Google Scholar 

  7. A. Jawad, M.U. Shahzad, Eur. Phys. C. 76, 123 (2016)

    Article  ADS  Google Scholar 

  8. E. Elizalde, S.R. Hildebrandt, Phys. Rev. D. 65, 124024 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  9. O.B. Zaslavskii, Phys. Lett. B 688, 278 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  10. J.M. Bardeen, Astron. J. 73, 164 (1968)

    Article  Google Scholar 

  11. A.D. Sakharov, JETP 22, 241 (1966)

    ADS  Google Scholar 

  12. E.B. Gliner, JETP 22, 378 (1966)

    ADS  Google Scholar 

  13. S. Ansoldi, Phys. Rev. D. 07, 2333–2346 (2008)

    Google Scholar 

  14. E. Ayon-Beato, A. Garcia, Phys. Lett. B 493, 149 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  15. M. Born, L. Infeld, Proc. R. Soc. Lond. A 144, 425 (1934)

    Article  ADS  Google Scholar 

  16. W. Berej, J. Matyjasek, D. Tryniecki, M. Woronowicz, Gen. Relativ. Gravit. 38, 885 (2006)

    Article  ADS  Google Scholar 

  17. S.A. Hayward, Phys. Rev. Lett. 96, 031103 (2006)

    Article  ADS  Google Scholar 

  18. C. Bambi, L. Modesto, Phys. Lett. B 721, 329 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  19. S.G. Ghosh, S.D. Maharaj, Eur. Phys. J. C 75, 07 (2015)

    Article  ADS  Google Scholar 

  20. B. Toshmatov et al., Phys. Rev. D. 89, 104017 (2014)

    Article  ADS  Google Scholar 

  21. W. Berej, J. Matyjasek, D. Tryniecki, M. Woronowicz, Gen. Relativ. Gravit. 38, 885906 (2006)

    Article  Google Scholar 

  22. K.A. Bronnikov, V.N. Melnikov, H. Dehnen, Phys. Rev. D 68, 024025 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  23. E.L.B. Junior, M.E. Rodrigues, M.J.S. Houndjo, JCAP 1510, 60 (2015)

    Article  ADS  Google Scholar 

  24. C.H. Nam, Gen. Relativ. Gravit. 50, 57 (2018)

    Article  ADS  Google Scholar 

  25. C.H. Nam, Eur. Phys. J. C 78, 418 (2018)

    Article  ADS  Google Scholar 

  26. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006). https://doi.org/10.1142/S021827180600942X. [arXiv:hep-th/0603057]

    Article  ADS  Google Scholar 

  27. S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011). [arXiv:1011.0544 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  28. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Phys. Rep. 692, 1 (2017). https://doi.org/10.1016/j.physrep.2017.06.001. [arXiv:1705.11098 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  29. S. Capozziello, V. Faraoni, Beyond Einstein Gravity (Springer, Dordrecht, 2010)

    MATH  Google Scholar 

  30. A. De Felice, S. Tsujikawa, Living Rev. Rel. 13, 3 (2010). https://doi.org/10.12942/lrr-2010-3. [arXiv:1002.4928 [gr-qc]]

    Article  Google Scholar 

  31. S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011). [arXiv:1108.6266 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  32. A. Joyce, B. Jain, J. Khoury, M. Trodden, Phys. Rep. 568, 1 (2015). [arXiv:1407.0059 [astro-ph.CO]]

    Article  ADS  MathSciNet  Google Scholar 

  33. K. Koyama, Rep. Prog. Phys. 79(4), 046902 (2016). https://doi.org/10.1088/0034-4885/79/4/046902. [arXiv:1504.04623 [astro-ph.CO]]

  34. Y.F. Cai, S. Capozziello, M. De Laurentis, E.N. Saridakis, Rep. Prog. Phys. 79(10), 106901 (2016). https://doi.org/10.1088/0034-4885/79/10/106901. [arXiv:1511.07586 [gr-qc]]

  35. K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Astrophys. Space Sci. 342, 155 (2012). [arXiv:1205.3421 [gr-qc]]

    Article  ADS  Google Scholar 

  36. K. Bamba, S. D. Odintsov, Symmetry 7(1), 220–240 (2015). https://doi.org/10.3390/sym7010220. [arXiv:1503.00442 [hep-th]]

  37. J.D. Bekenstein, Lett. Nuovo Cim. 4, 737 (1972)

    Article  ADS  Google Scholar 

  38. J.D. Bekenstein, Phys. Rev. D 9, 3292 (1974)

    Article  ADS  Google Scholar 

  39. J.D. Bekenstein, Phys. Rev. D 7, 949 (1973)

    Article  ADS  Google Scholar 

  40. J.M. Bardeen, B. Carter, S.W. Hawking, Commun. Math. Phys. 31, 161 (1973)

    Article  ADS  Google Scholar 

  41. S.W. Hawking, Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  Google Scholar 

  42. L. Balart, E.C. Vagenas, Phys. Rev. D 90, 124045 (2014)

    Article  ADS  Google Scholar 

  43. A. Kehagias, K. Sfetsos, Phys. Lett. B 678, 123 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  44. J.D. Bekenstein, Phys. Rev. D. 07, 2333–2346 (1973)

    Article  ADS  Google Scholar 

  45. J.D. Bekenstein, Phys. Rev. D. 9, 3292–3300 (1974)

    Article  ADS  Google Scholar 

  46. B.P. Dolan, Class. Quantum Gravity 28, 125020 (2011)

    Article  ADS  Google Scholar 

  47. L. Visinelli, S. Vagnozzi, U. Danielsson, Symmetry 11, 1035 (2019)

    Article  Google Scholar 

  48. R.A. El-Nabulsi, J. Korean Phys. Soc. 79, 345–349 (2021)

    Article  ADS  Google Scholar 

  49. R.A. El-Nabulsi, Phys. Lett. B 619, 26–29 (2005)

    Article  ADS  Google Scholar 

  50. R.A. El-Nabulsi, Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 85, 395–399 (2015)

  51. R.A. El-Nabulsi, Gen. Relativ. Gravit. 42, 1381–1398 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  52. J.B. Hartle et al, arXiv preprint arXiv:1205.3807 (2012)

  53. R.A. El-Nabulsi, Chin. Phys. Lett. 23, 1124 (2006)

    Article  Google Scholar 

  54. Brian P. Dolan, Class. Quantum Gravity 28, 125020 (2011)

    Article  ADS  Google Scholar 

  55. S.I. Kruglov, Ann. Phys. 428, 168449 (2021)

    Article  Google Scholar 

  56. R.A. El-Nabulsi, Commun. Theor. Phys. 54, 16 (2010)

    Article  ADS  Google Scholar 

  57. B. Eslam Panah, Kh. Jafarzade, S.H. Hendi, Nucl. Phys. B 961, 115269 (2020)

  58. R.A. El-Nabulsi, Chin. Phys. Lett. 25, 2785 (2008)

    Article  ADS  Google Scholar 

  59. A. Ghosh, C. Bhamidipati, Phys. Rev. D 100, 126020 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  60. R.A. El-Nabulsi, Astrophys. Space Sci. 325, 149–152 (2010)

    Article  ADS  Google Scholar 

  61. R.A. El-Nabulsi, Can. J. Phys. 91, 300–321 (2013)

    Article  ADS  Google Scholar 

  62. R.A. El-Nabulsi, Gen. Relativ. Gravit. 42, 1875–1887 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  63. M. Berg et al., Astrophys. J. Lett. 847, 101 (2017)

    Article  Google Scholar 

  64. S.W. Wei, Y.X. Liu, Phys. Rev. D 101, 104018 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  65. P.G.S. Fernandes, Phys. Lett. B 805, 135468 (2020)

    Article  MathSciNet  Google Scholar 

  66. R.G. Cai, L.M. Cao, N. Ohta, J. High Energy Phys. 08, 082 (2010)

    Article  Google Scholar 

  67. R.A. El-Nabulsi, Astrophys. Space Sci. 331, 199–206 (2011)

    Article  ADS  Google Scholar 

  68. M. Saravi1, M. Hermann, H.E. Khah, J. Theor. Appl. Phys. 7, 8 (2013)

  69. P.C.W. Davies, Class. Quantum Gravity 6, 1909 (1989)

    Article  ADS  Google Scholar 

  70. S. Hawking, D.N. Page, Commun. Math. Phys. 87, 577 (1983)

    Article  ADS  Google Scholar 

  71. E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998)

    Article  MathSciNet  Google Scholar 

  72. A. Sahay, T. Sarkar, G. Sengupta, J. High Energy Phys. 1007, 082 (2010)

    Article  ADS  Google Scholar 

  73. D. Kubiznak, R.B. Mann, Soc. Math. Phys. 33, 1207 (2012)

    Google Scholar 

  74. D. Hansen, Class. Quantum Gravity 33, 165005 (2016)

    Article  ADS  Google Scholar 

  75. B.P. Dolan, Class. Quantum Gravity 28, 125020 (2011)

    Article  ADS  Google Scholar 

  76. B.P. Dolan, Class. Quantum Gravity 28, 235015 (2011)

    Article  ADS  Google Scholar 

  77. D. Kubiznák, R.B. Maan, J. High Energy Phys. 1207, 33 (2012)

    Article  ADS  Google Scholar 

  78. M. Cvetic, S. Nojiri, S.D. Odintsov, Nucl. Phys. B. 628, 295–330 (2002)

    Article  ADS  Google Scholar 

  79. R. Banerjee, S.K. Modak, J. High Energy Phys. 2009, 073 (2009)

    Article  Google Scholar 

  80. M. Akbar, R.G. Cai, J. High Energy Phys. 648, 243–248 (2007)

    Google Scholar 

  81. R.G. Cai, L.M. Cao, Y.P. Hu, J. High Energy Phys. 2008, 090 (2008)

    Article  ADS  Google Scholar 

  82. A. Jawad, S. Chaudhary, Mod. Phys. Lett. A 34, 1950222 (2019)

    Article  ADS  Google Scholar 

  83. W. Xu, C.Y. Wang, B. Zhu, Phys. Rev. D 99, 044010 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  84. D. Lovelock, J. Math. Phys. 12, 498 (1971)

    Article  ADS  Google Scholar 

  85. K. Izumi, Phys. Rev. D 90, 044037 (2014)

    Article  ADS  Google Scholar 

  86. B. Zwiebach, Phys. Lett. 156, 315 (1985)

    Article  Google Scholar 

  87. E. Ayon-Beato, A. Garcia, Phys. Lett. B 464, 25 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  88. E. Ayon-Beato, A. Garcia, Phys. Lett. B 31, 629 (1999)

    Google Scholar 

  89. K.A. Bronnikov, Phys. Rev. D 63, 044005 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  90. J.E. Lidsey, N.J. Nunes, Phys. Rev. D 67, 103510 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  91. M.W. Juan, R.G. Cai, S. Keng, Commun. Theor. Phys. 46, 453 (2006)

    Article  ADS  Google Scholar 

  92. D. Kubiznak, R.B. Mann, Can. J. Phys. 93, 999–1002 (2015)

    Article  ADS  Google Scholar 

  93. S.W. Hawking, Nature 248, 30 (1974)

    Article  ADS  Google Scholar 

  94. M. Astorino, Phys. Rev. D. 95, 064007 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  95. D. Kastor, S. Ray, J. Traschen, Commun. Math. Phys. 26, 195011 (2009)

    Google Scholar 

  96. E. Ayon-Beato, A. Garcia, Phys. Rev. Lett. 80, 5056 (1998)

    Article  ADS  Google Scholar 

  97. T. Jacobson, Phys. Rev. Lett. 75, 1260 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  98. T. Padmanabhan, Mod. Phys. Lett. A 17, 923 (2002)

    Article  ADS  Google Scholar 

  99. G.W. Gibbons, S.W. Hawking, Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  Google Scholar 

  100. A. Lewkowycz, J. Maldacena, J. High Energy Phys. 2013, 90 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The research work has been supported by the Postdoctoral Fellowship at Zhejiang Normal University under Grant No. ZC304022919.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Mustafa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jawad, A., Abbas, G., Siddique, I. et al. Critical points of regular black hole with Gauss–Bonnet effected entropy. Eur. Phys. J. Plus 137, 284 (2022). https://doi.org/10.1140/epjp/s13360-022-02488-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02488-y

Navigation