Skip to main content
Log in

Small-instanton transitions in F-theory

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We study the phase transition between G-instantons and D3-branes quantitatively. A G-instanton is a classical solution to the self-dual equation of the M/F-theory three-form tensor field C in the complex fourfold. This phase transition is dual to that between ‘vertical’ small instantons and 5-branes in the heterotic string. Using G as a background gauge flux, we may dynamically control the gauge symmetry breaking and connect between different vacua of F-theory. We may understand the amount of flux undergoing the phase transition and the resulting number of D3-branes in terms of group-theoretical quantities. We also discuss the resulting chirality change and preservation of anomaly freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In the literature, sometimes G-instanton refers to an instanton with the structure group G [23].

  2. We may also have additional U(1) factors and the total gauge group can be enhanced. Non-perturbatively enhanced gauge groups are also possible [26, 40]. In this paper, we restrict our focus to the perturbative gauge group in ten dimensions.

  3. In this paper, we use the same notation for a line bundle, its dual divisor and its first Chern class, without confusion.

  4. A U(1) gauge group may also be preserved, unless its gauge boson acquires a Stückelberg mass. Its condition is topological: the dual divisor corresponding to U(1) should be trivial in the base threefold [31, 45]. Since it depends on the generous geometry of the Calabi–Yau fourfold in F-theory, this mechanism has no dual in the heterotic side. An explicit construction for such G-flux in native F-theory is given [69].

References

  1. P. Candelas, G.T. Horowitz, A. Strominger, E. Witten, Vacuum configurations for superstrings. Nucl. Phys. B 258, 46 (1985). https://doi.org/10.1016/0550-3213(85)90602-9

    Article  ADS  MathSciNet  Google Scholar 

  2. L.J. Dixon, J.A. Harvey, C. Vafa, E. Witten, Strings on orbifolds. Nucl. Phys. B 261, 678 (1985). https://doi.org/10.1016/0550-3213(85)90593-0

    Article  ADS  MathSciNet  Google Scholar 

  3. L.J. Dixon, J.A. Harvey, C. Vafa, E. Witten, Strings on orbifolds. 2. Nucl. Phys. B 274, 285 (1986). https://doi.org/10.1016/0550-3213(86)90287-7

    Article  ADS  MathSciNet  Google Scholar 

  4. C. Angelantonj, A. Sagnotti, Phys. Rept. 371 (2002) 1; Erratum: [Phys. Rept. 376 (2003) no.6, 407] https://doi.org/10.1016/S0370-1573(02)00273-9, https://doi.org/10.1016/S0370-1573(03)00006-1 [hep-th/0204089] and references therein

  5. A.N. Schellekens, N.P. Warner, Phys. Lett. B 177, 317 (1986). https://doi.org/10.1016/0370-2693(86)90760-4

    Article  ADS  MathSciNet  Google Scholar 

  6. A.N. Schellekens, N.P. Warner, Phys. Lett. B 181, 339 (1986). https://doi.org/10.1016/0370-2693(86)90059-6

    Article  ADS  MathSciNet  Google Scholar 

  7. A.N. Schellekens, N.P. Warner, Nucl. Phys. B 287, 317 (1987). https://doi.org/10.1016/0550-3213(87)90108-8

    Article  ADS  Google Scholar 

  8. K.S. Choi, S.J. Rey, Elliptic Genus, Anomaly Cancellation and Heterotic M-theory. arXiv:1710.07627 [hep-th]

  9. S. Sethi, C. Vafa, E. Witten, Nucl. Phys. B 480, 213 (1996). https://doi.org/10.1016/S0550-3213(96)00483-X [hep-th/9606122]

    Article  ADS  Google Scholar 

  10. M.J. Duff, R. Minasian, E. Witten, Evidence for heterotic/heterotic duality. Nucl. Phys. B 465, 413 (1996). https://doi.org/10.1016/0550-3213(96)00059-4 [hep-th/9601036]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. C. Vafa, The String landscape and the swampland. hep-th/0509212

  12. D. Cremades, L.E. Ibanez, F. Marchesano, JHEP 0207, 022 (2002). https://doi.org/10.1088/1126-6708/2002/07/022 [hep-th/0203160]

    Article  ADS  Google Scholar 

  13. M. Gomez-Reino, I. Zavala, JHEP 0209, 020 (2002). https://doi.org/10.1088/1126-6708/2002/09/020 [hep-th/0207278]

    Article  ADS  Google Scholar 

  14. K. Hashimoto, W. Taylor, JHEP 0310, 040 (2003). https://doi.org/10.1088/1126-6708/2003/10/040 [hep-th/0307297]

    Article  ADS  Google Scholar 

  15. M.R. Douglas, Cg. Zhou, JHEP 0406, 014 (2004). https://doi.org/10.1088/1126-6708/2004/06/014 [hep-th/0403018]

    Article  ADS  Google Scholar 

  16. K.S. Choi, J.E. Kim, JHEP 0511, 043 (2005). https://doi.org/10.1088/1126-6708/2005/11/043 [hep-th/0508149]

    Article  ADS  Google Scholar 

  17. K.S. Choi, AIP Conf. Proc. 805(1), 346 (2005). https://doi.org/10.1063/1.2149727

    Article  ADS  Google Scholar 

  18. K.S. Choi, Phys. Rev. D 74, 066002 (2006). https://doi.org/10.1103/PhysRevD.74.066002 [hep-th/0603186]

    Article  ADS  Google Scholar 

  19. K.S. Choi, Int. J. Mod. Phys. A 22, 3169 (2007). https://doi.org/10.1142/S0217751X07036786 [hep-th/0610026]

    Article  ADS  Google Scholar 

  20. J. Kumar, J.D. Wells, AIP Conf. Proc. 903(1), 509 (2007). https://doi.org/10.1063/1.2735235 [hep-th/0604203]

    Article  ADS  Google Scholar 

  21. E. Witten, Small instantons in string theory. Nucl. Phys. B 460, 541 (1996). https://doi.org/10.1016/0550-3213(95)00625-7 [hep-th/9511030]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. K.S. Choi, T. Kobayashi, JHEP 1907, 111 (2019). https://doi.org/10.1007/JHEP07(2019)111 [arXiv:1901.11194 [hep-th]]

    Article  ADS  Google Scholar 

  23. M. Bershadsky, A. Johansen, T. Pantev, V. Sadov, Nucl. Phys. B 505, 165–201 (1997). https://doi.org/10.1016/S0550-3213(97)00393-3 [arXiv:hep-th/9701165 [hep-th]]

    Article  ADS  Google Scholar 

  24. K.S. Choi, Eur. Phys. J. C 75(5), 202 (2015). https://doi.org/10.1140/epjc/s10052-015-3423-8 [arXiv:1409.2476 [hep-th]]

    Article  ADS  Google Scholar 

  25. K.S. Choi, JHEP 1509, 101 (2015). https://doi.org/10.1007/JHEP09(2015)101 [arXiv:1504.00602 [hep-th]]

    Article  ADS  Google Scholar 

  26. P.S. Aspinwall, D.R. Morrison, AMS/IP Stud. Adv. Math. 1, 703 (1996). [hep-th/9404151]

    Article  Google Scholar 

  27. B. Andreas, G. Curio, R. Minasian, JHEP 09, 022 (2000). https://doi.org/10.1088/1126-6708/2000/09/022 [arXiv:hep-th/0007212 [hep-th]]

    Article  ADS  Google Scholar 

  28. T.W. Grimm, T.W. Ha, A. Klemm, D. Klevers, Nucl. Phys. B 838, 458–491 (2010). https://doi.org/10.1016/j.nuclphysb.2010.06.011 [arXiv:0912.3250 [hep-th]]

    Article  ADS  Google Scholar 

  29. R. Tatar, T. Watari, Nucl. Phys. B 747, 212 (2006). https://doi.org/10.1016/j.nuclphysb.2006.04.025 [hep-th/0602238]

    Article  ADS  Google Scholar 

  30. H. Hayashi, R. Tatar, Y. Toda, T. Watari, M. Yamazaki, Nucl. Phys. B 806, 224 (2009). https://doi.org/10.1016/j.nuclphysb.2008.07.031 [arXiv:0805.1057 [hep-th]]

    Article  ADS  Google Scholar 

  31. C. Beasley, J.J. Heckman, C. Vafa, JHEP 0901, 059 (2009). https://doi.org/10.1088/1126-6708/2009/01/059 [arXiv:0806.0102 [hep-th]]

    Article  ADS  Google Scholar 

  32. R. Donagi, M. Wijnholt, Adv. Theor. Math. Phys. 15(6), 1523 (2011). https://doi.org/10.4310/ATMP.2011.v15.n6.a1 [arXiv:0808.2223 [hep-th]]

    Article  MathSciNet  Google Scholar 

  33. R. Blumenhagen, Phys. Rev. Lett. 102, 071601 (2009). https://doi.org/10.1103/PhysRevLett.102.071601 [arXiv:0812.0248 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  34. J. Marsano, N. Saulina, S. Schafer-Nameki, JHEP 0908, 046 (2009). https://doi.org/10.1088/1126-6708/2009/08/046 [arXiv:0906.4672 [hep-th]]

    Article  ADS  Google Scholar 

  35. M. Cvetic, T.W. Grimm, D. Klevers, JHEP 1302, 101 (2013). https://doi.org/10.1007/JHEP02(2013)101 [arXiv:1210.6034 [hep-th]]

    Article  ADS  Google Scholar 

  36. K. Dasgupta, G. Rajesh, S. Sethi, JHEP 9908, 023 (1999). https://doi.org/10.1088/1126-6708/1999/08/023 [hep-th/9908088]

    Article  ADS  Google Scholar 

  37. J. Fuchs, C. Schweigert, Symmetries, Lie Algebras and Representations: A Graduate Course for Physicists

  38. T. Weigand, PoS TASI 2017 (2018) 016 [arXiv:1806.01854 [hep-th]]

  39. M. Bershadsky, K.A. Intriligator, S. Kachru, D.R. Morrison, V. Sadov, C. Vafa, Geometric singularities and enhanced gauge symmetries. Nucl. Phys. B 481, 215 (1996). https://doi.org/10.1016/S0550-3213(96)90131-5 [hep-th/9605200]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. P. Candelas, E. Perevalov, G. Rajesh, Nucl. Phys. B 507, 445–474 (1997). https://doi.org/10.1016/S0550-3213(97)00563-4 [arXiv:hep-th/9704097 [hep-th]]

    Article  ADS  Google Scholar 

  41. B. Andreas, G. Curio, Adv. Theor. Math. Phys. 3, 1325 (1999). https://doi.org/10.4310/ATMP.1999.v3.n5.a4 [hep-th/9908193]

    Article  MathSciNet  Google Scholar 

  42. M. Esole, P. Jefferson, M.J. Kang, Commun. Math. Phys. 371(1), 99 (2019). https://doi.org/10.1007/s00220-019-03517-1 [arXiv:1703.00905 [math.AG]]

    Article  ADS  Google Scholar 

  43. A.P. Braun, C.R. Brodie, A. Lukas, F. Ruehle, Phys. Rev. D 98(12), 126004 (2018). https://doi.org/10.1103/PhysRevD.98.126004 [arXiv:1803.06190 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  44. A. Klemm, B. Lian, S.S. Roan, S.T. Yau, Nucl. Phys. B 518, 515 (1998). https://doi.org/10.1016/S0550-3213(97)00798-0 [hep-th/9701023]

    Article  ADS  Google Scholar 

  45. J. Marsano, S. Schafer-Nameki, JHEP 1111, 098 (2011). https://doi.org/10.1007/JHEP11(2011)098 [arXiv:1108.1794 [hep-th]]

    Article  ADS  Google Scholar 

  46. R. Blumenhagen, T.W. Grimm, B. Jurke, T. Weigand, Nucl. Phys. B 829, 325 (2010). https://doi.org/10.1016/j.nuclphysb.2009.12.013 [arXiv:0908.1784 [hep-th]]

    Article  ADS  Google Scholar 

  47. R. Friedman, J. Morgan, E. Witten, Commun. Math. Phys. 187, 679 (1997). https://doi.org/10.1007/s002200050154 [hep-th/9701162]

    Article  ADS  Google Scholar 

  48. B. Andreas, G. Curio, Three-branes and five-branes in N = 1 dual string pairs. Nucl. Phys. B 417, 41 (1998). https://doi.org/10.1016/S0370-2693(97)01342-7

    Article  MathSciNet  Google Scholar 

  49. E. Witten, J. Geom. Phys. 22, 1 (1997). https://doi.org/10.1016/S0393-0440(96)00042-3 [hep-th/9609122]

    Article  ADS  MathSciNet  Google Scholar 

  50. T.W. Grimm, M. Kerstan, E. Palti, T. Weigand, JHEP 12, 004 (2011). https://doi.org/10.1007/JHEP12(2011)004 [arXiv:1107.3842 [hep-th]]

    Article  ADS  Google Scholar 

  51. T.W. Grimm, R. Savelli, Phys. Rev. D 85, 026003 (2012). https://doi.org/10.1103/PhysRevD.85.026003 [arXiv:1109.3191 [hep-th]]

    Article  ADS  Google Scholar 

  52. T.W. Grimm, H. Hayashi, JHEP 03, 027 (2012). https://doi.org/10.1007/JHEP03(2012)027 [arXiv:1111.1232 [hep-th]]

    Article  ADS  Google Scholar 

  53. S. Krause, C. Mayrhofer, T. Weigand, Nucl. Phys. B 858, 1 (2012). https://doi.org/10.1016/j.nuclphysb.2011.12.013 [arXiv:1109.3454 [hep-th]]

    Article  ADS  Google Scholar 

  54. R. Donagi, M. Wijnholt, Adv. Theor. Math. Phys. 15(5), 1237–1317 (2011). https://doi.org/10.4310/ATMP.2011.v15.n5.a2 [arXiv:0802.2969 [hep-th]]

    Article  MathSciNet  Google Scholar 

  55. A.P. Braun, A. Collinucci, R. Valandro, Nucl. Phys. B 856, 129–179 (2012). https://doi.org/10.1016/j.nuclphysb.2011.10.034 [arXiv:1107.5337 [hep-th]]

    Article  ADS  Google Scholar 

  56. C. Beasley, J.J. Heckman, C. Vafa, JHEP 0901, 058 (2009). https://doi.org/10.1088/1126-6708/2009/01/058 [arXiv:0802.3391 [hep-th]]

    Article  ADS  Google Scholar 

  57. P. Horava, E. Witten, Heterotic and type I string dynamics from eleven-dimensions. Nucl. Phys. B 460, 506 (1996). https://doi.org/10.1016/0550-3213(95)00621-4 [hep-th/9510209]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. P. Horava, E. Witten, Eleven-dimensional supergravity on a manifold with boundary. Nucl. Phys. B 475, 94 (1996). https://doi.org/10.1016/0550-3213(96)00308-2 [hep-th/9603142]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. S. Cecotti, C. Cordova, J.J. Heckman, C. Vafa, JHEP 07, 030 (2011). https://doi.org/10.1007/JHEP07(2011)030 [arXiv:1010.5780 [hep-th]]

    Article  ADS  Google Scholar 

  60. L.B. Anderson, J.J. Heckman, S. Katz, JHEP 05, 080 (2014). https://doi.org/10.1007/JHEP05(2014)080 [arXiv:1310.1931 [hep-th]]

    Article  ADS  Google Scholar 

  61. L.B. Anderson, J.J. Heckman, S. Katz, L.P. Schaposnik, JHEP 10, 058 (2017). https://doi.org/10.1007/JHEP10(2017)058 [arXiv:1702.06137 [hep-th]]

    Article  ADS  Google Scholar 

  62. K. Becker, M. Becker, Nucl. Phys. B 477, 155 (1996). https://doi.org/10.1016/0550-3213(96)00367-7 [hep-th/9605053]

    Article  ADS  Google Scholar 

  63. M. Del Zotto, J.J. Heckman, A. Tomasiello, C. Vafa, JHEP 02, 054 (2015). https://doi.org/10.1007/JHEP02(2015)054 [arXiv:1407.6359 [hep-th]]

    Article  Google Scholar 

  64. K.S. Choi, S.J. Rey, E(lementary)-strings in six-dimensional heterotic F-theory. JHEP 1709, 092 (2017). https://doi.org/10.1007/JHEP09(2017)092 [arXiv:1706.05353 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. B. Andreas, G. Curio, JHEP 0001, 013 (2000). https://doi.org/10.1088/1126-6708/2000/01/013 [hep-th/9912025]

    Article  ADS  Google Scholar 

  66. D.R. Morrison, C. Vafa, Compactifications of F theory on Calabi–Yau threefolds. 1. Nucl. Phys. B 473, 74 (1996). https://doi.org/10.1016/0550-3213(96)00242-8 [hep-th/9602114]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. D.R. Morrison, C. Vafa, Compactifications of F theory on Calabi–Yau threefolds. 2. Nucl. Phys. B 476, 437 (1996). https://doi.org/10.1016/0550-3213(96)00369-0 [hep-th/9603161]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. K.S. Choi, Nucl. Phys. B 842, 1 (2011). https://doi.org/10.1016/j.nuclphysb.2010.08.012 [arXiv:1007.3843 [hep-th]]

    Article  ADS  Google Scholar 

  69. A.P. Braun, A. Collinucci, R. Valandro, JHEP 07, 121 (2014). https://doi.org/10.1007/JHEP07(2014)121 [arXiv:1402.4096 [hep-th]]

    Article  ADS  Google Scholar 

  70. S. Krause, C. Mayrhofer, T. Weigand, JHEP 1208, 119 (2012). https://doi.org/10.1007/JHEP08(2012)119 [arXiv:1202.3138 [hep-th]]

    Article  ADS  Google Scholar 

  71. T. Banks, M.R. Douglas, N. Seiberg, Phys. Lett. B 387, 278–281 (1996). https://doi.org/10.1016/0370-2693(96)00808-8 [arXiv:hep-th/9605199 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  72. C.G. Callan, J.M. Maldacena, Nucl. Phys. B 513, 198–212 (1998). https://doi.org/10.1016/S0550-3213(97)00700-1 [arXiv:hep-th/9708147 [hep-th]]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the Grant NRF-2018R1A2B2007163 of National Research Foundation of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang-Sin Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angus, S., Choi, KS. Small-instanton transitions in F-theory. Eur. Phys. J. Plus 137, 274 (2022). https://doi.org/10.1140/epjp/s13360-022-02456-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02456-6

Navigation