Skip to main content
Log in

T-branes and monodromy

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We introduce T-branes, or “triangular branes”, which are novel non-abelian bound states of branes characterized by the condition that on some loci, their matrix of normal deformations, or Higgs field, is upper triangular. These configurations refine the notion of monodromic branes which have recently played a key role in F-theory phenomenology. We show how localized matter living on complex codimension one subspaces emerge, and explain how to compute their Yukawa couplings, which are localized in complex codimension two. Not only do T-branes clarify what is meant by brane monodromy, they also open up a vast array of new possibilities both for phenomenological constructions and for purely theoretical applications. We show that for a general T-brane, the eigenvalues of the Higgs field can fail to capture the spectrum of localized modes. In particular, this provides a method for evading some constraints on F-theory GUTs which have assumed that the spectral equation for the Higgs field completely determines a local model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Donagi and M. Wijnholt, Model building with F-theory, arXiv:0802.2969 [SPIRES].

  2. C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theoryI, JHEP 01 (2009) 058 [arXiv:0802.3391] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theoryII: experimental predictions, JHEP 01 (2009) 059 [arXiv:0806.0102] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. R. Donagi and M. Wijnholt, Breaking GUT groups in F-theory, arXiv:0808.2223 [SPIRES].

  5. J.J. Heckman, Particle physics implications of F-theory, arXiv:1001.0577 [SPIRES].

  6. T. Weigand, Lectures on F-theory compactifications and model building, Class. Quant. Grav. 27 (2010) 214004 [arXiv:1009.3497] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. C. Vafa and E. Witten, A strong coupling test of S duality, Nucl. Phys. B 431 (1994) 3 [hep-th/9408074] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. J.J. Heckman and C. Vafa, Flavor hierarchy From F-theory, Nucl. Phys. B 837 (2010) 137 [arXiv:0811.2417] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. V. Bouchard, J.J. Heckman, J. Seo and C. Vafa, F-theory and neutrinos: Kaluza-Klein dilution of flavor hierarchy, JHEP 01 (2010) 061 [arXiv:0904.1419] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. J.J. Heckman and C. Vafa, CP violation and F-theory GUTs, Phys. Lett. B 694 (2011) 482 [arXiv:0904.3101] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  11. S. Cecotti, M.C.N. Cheng, J.J. Heckman and C. Vafa, Yukawa couplings in F-theory and non-commutative geometry, arXiv:0910.0477 [SPIRES].

  12. H. Hayashi, T. Kawano, R. Tatar and T. Watari, Codimension-3 singularities and Yukawa couplings in F-theory, Nucl. Phys. B 823 (2009) 47 [arXiv:0901.4941] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. J.J. Heckman, A. Tavanfar and C. Vafa, The point of E 8 in F-theory GUTs, JHEP 08 (2010) 040 [arXiv:0906.0581] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. J. Marsano, N. Saulina and S. Schäfer-Nameki, Monodromies, fluxes and compact three-generation F-theory GUTs, JHEP 08 (2009) 046 [arXiv:0906.4672] [SPIRES].

    Article  ADS  Google Scholar 

  15. J.J. Heckman and C. Vafa, An exceptional sector for F-theory GUTs, Phys. Rev. D 83 (2011) 026006 [arXiv:1006.5459] [SPIRES].

    ADS  Google Scholar 

  16. J.J. Heckman, Y. Tachikawa, C. Vafa and B. Wecht, N = 1 SCFTs from brane monodromy, JHEP 11 (2010) 132 [arXiv:1009.0017] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. R. Donagi, Spectral covers, alg-geom/9505009.

  18. R. Donagi and M. Wijnholt, Higgs bundles and UV completion in F-theory, arXiv:0904.1218 [SPIRES].

  19. E. Dudas and E. Palti, Froggatt-Nielsen models from E 8 in F-theory GUTs, JHEP 01 (2010) 127 [arXiv:0912.0853] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. S.H. Katz and C. Vafa, Matter from geometry, Nucl. Phys. B 497 (1997) 146 [hep-th/9606086] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. M. Bershadsky, C. Vafa and V. Sadov, D-branes and topological field theories, Nucl. Phys. B 463 (1996) 420 [hep-th/9511222] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. M. Bershadsky, A. Johansen, T. Pantev and V. Sadov, On four-dimensional compactifications of F-theory, Nucl. Phys. B 505 (1997) 165 [hep-th/9701165] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. N.J. Hitchin, The self-duality equations on a Riemann surface, Proc. Math. Soc. 55 (1987) 59.

    Article  MathSciNet  MATH  Google Scholar 

  24. P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley & Sons, Inc., New York U.S.A. (1978).

  25. C. Cordova, Decoupling gravity in F-theory, arXiv:0910.2955 [SPIRES].

  26. H. Hayashi, T. Kawano, Y. Tsuchiya and T. Watari, Flavor structure in F-theory compactifications, JHEP 08 (2010) 036 [arXiv:0910.2762] [SPIRES.

    Article  MathSciNet  ADS  Google Scholar 

  27. R. Donagi, S. Katz and E. Sharpe, Spectra of D-branes with Higgs vevs, Adv. Theor. Math. Phys. 8 (2005) 813 [hep-th/0309270] [SPIRES].

    MathSciNet  Google Scholar 

  28. C.T. Simpson, Higgs bundles and local systems, Publ. Math. IHES 75 (1992) 5.

    MathSciNet  MATH  Google Scholar 

  29. S. Cecotti and C. Vafa, Topological antitopological fusion, Nucl. Phys. B 367 (1991) 359 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. H. Hayashi, T. Kawano, Y. Tsuchiya and T. Watari, Flavor structure in F-theory compactifications, JHEP 08 (2010) 036 [arXiv:0910.2762] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin systems and the WKB approximation, arXiv:0907.3987 [SPIRES].

  32. B.M. McCoy, C.A. Tracy and T.T. Wu, Painleve functions of the third kind, J. Math. Phys. 18 (1977) 1058 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. T. Szamuely, Galois groups and fundamental groups, Cambridge studies in advanced mathematics 117, Cambridge University Press, New York U.S.A. (2009).

  34. S.F. King, G.K. Leontaris and G.G. Ross, Family symmetries in F-theory GUTs, Nucl. Phys. B 838 (2010) 119 [arXiv:1005.1025] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  35. G.K. Leontaris and G.G. Ross, Yukawa couplings and fermion mass structure in F-theory GUTs, JHEP 02 (2011) 108 [arXiv:1009.6000] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  36. D. Green, Z. Komargodski, N. Seiberg, Y. Tachikawa and B. Wecht, Exactly marginal deformations and global symmetries, JHEP 06 (2010) 106 [arXiv:1005.3546] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. T. Banks, M.R. Douglas and N. Seiberg, Probing F-theory with branes, Phys. Lett. B 387 (1996) 278 [hep-th/9605199] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  38. J.A. Minahan and D. Nemeschansky, An N = 2 superconformal fixed point with E 6 global symmetry, Nucl. Phys. B 482 (1996) 142 [hep-th/9608047] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. J.A. Minahan and D. Nemeschansky, Superconformal fixed points with E n global symmetry, Nucl. Phys. B 489 (1997) 24 [hep-th/9610076] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. K.A. Intriligator and N. Seiberg, Phases of N = 1 supersymmetric gauge theories in four-dimensions, Nucl. Phys. B 431 (1994) 551 [hep-th/9408155] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. R.C. Myers, Dielectric-branes, JHEP 12 (1999) 022 [hep-th/9910053] [SPIRES].

    Article  ADS  Google Scholar 

  42. J.J. Heckman and H. Verlinde, Evidence for F(uzz) Theory, JHEP 01 (2011) 044 [arXiv:1005.3033] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  43. M. Kashiwara and P. Schapira, Sheaves on manifolds, A series of comprehensive studies in mathematics 292. Springer, New York U.S.A. (2002).

  44. T.W. Grimm, S. Krause and T. Weigand, F-Theory GUT vacua on compact Calabi-Yau fourfolds, JHEP 07 (2010) 037 [arXiv:0912.3524] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  45. R. Friedman, Algebraic surfaces and holomorphic vector bundles, Springer, New York U.S.A. (1998).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clay Córdova.

Additional information

ArXiv ePrint: arXiv:1010.5780

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cecotti, S., Córdova, C., Heckman, J.J. et al. T-branes and monodromy. J. High Energ. Phys. 2011, 30 (2011). https://doi.org/10.1007/JHEP07(2011)030

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2011)030

Keywords

Navigation