Skip to main content
Log in

Entropy exchange and thermal fluctuations in the Jaynes–Cummings model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The time dependence of the quantum entropy for a two-level atom interacting with a single-cavity mode is computed using the Jaynes–Cummings model, when the initial state of the radiation field is prepared in a thermal state with temperature fluctuations. In order to describe the out-of-equilibrium situation, the Super-Statistics approximation is implemented so that the gamma and the multi-level distribution functions are used to introduce the inverse temperature fluctuations. In the case of the gamma distribution, paralleling the Tsallis non-additive formalism, the entropy for the system is computed with the q-logarithm prescription, and the impact of the initial state of the atom is also taken into account. The results show that, in the first distribution, the q-parameter (related to the thermal fluctuations) modifies the partial entropies appreciably. In contrast, the way the inverse temperatures are distributed in the second one may lead to changes in the entropy functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.K. Ekert, Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. M.A. Nielsen, I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2010)

    MATH  Google Scholar 

  3. M. Kjaergaard et al., Superconducting qubits: current state of play. Ann. Rev. Cond. Matt. Phys. 11, 369–395 (2020)

    Article  Google Scholar 

  4. A. Steane, Quantum computing. Rep. Prog. Phys. 61(2), 117 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  5. J. Schindler, D. Šafránek, A. Aguirre, Quantum correlation entropy. Phys. Rev. A 102, 052407 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  6. J. Catani, G. Barontini, G. Lamporesi, F. Rabatti, G. Thalhammer, F. Minardi, S. Stringari, M. Inguscio, Entropy exchange in a mixture of ultracold atoms. Phys. Rev. Lett. 103, 140401 (2009)

    Article  ADS  Google Scholar 

  7. Y. Xiang, S.-J. Xiong, Entropy exchange, coherent information, and concurrence. Phys. Rev. A 76, 014306 (2007)

    Article  ADS  Google Scholar 

  8. E. Wyke, A. Aiyejina, R. Andrews, Quantum excitation transfer, entanglement, and coherence in a trimer of two-level systems at finite temperature. Phys. Rev. A 101, 062101 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  9. F. Ares et al., Entanglement entropy in the long-range Kitaev chain. Phys. Rev. A 97, 062301 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  10. F. Ares et al., Entanglement in fermionic chains with finite-range coupling and broken symmetries. Phys. Rev. A 92, 042334 (2015)

    Article  ADS  Google Scholar 

  11. F. Shafieinejad, J. Hasanzadeh, S. Mahdavifar, Entanglement entropy in the spin-1/2 Heisenberg chain with hexamer modulation of exchange. Phys. A 556, 124794 (2020)

    Article  Google Scholar 

  12. T.J. Osborne, M.A. Nielsen, Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  13. G. Vidal, J.I. Latorre, E. Rico, A. Kitaev, Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003)

    Article  ADS  Google Scholar 

  14. M. Alexanian, V.E. Mkrtchian, Quantum entropy and polarization measurements of the two-photon system. Phys. Rev. A 97, 022326 (2018)

    Article  ADS  Google Scholar 

  15. W.K. Wootters, Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  MATH  Google Scholar 

  16. N. Gigena, R. Rossignoli, Generalized conditional entropy in bipartite quantum systems. J. Phys. A: Math. Theor. 47(1), 015302 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. C. Bengtson, E. Sjöqvist, The role of quantum coherence in dimer and trimer excitation energy transfer. New J. Phys. 19(11), 113015 (2017)

    Article  ADS  Google Scholar 

  18. W. Muschik, Aspects of Non-equilibrium Thermodynamics: Six Lectures on Fundamentals and Methods, vol. 9 (World Scientific, Singapore, 1990)

    Google Scholar 

  19. G. Lebon, D. Jou, J. Casas-Vázquez, Understanding Non-equilibrium Thermodynamics, vol. 295 (Springer, Berlin, 2008)

    Book  MATH  Google Scholar 

  20. S.R. De Groot, P. Mazur, Non-equilibrium Thermodynamics (Courier Corporation, North Chelmsford, 2013)

    MATH  Google Scholar 

  21. C. Beck, E.G.D. Cohen, Superstatistics. Phys. A 322, 267–275 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. C. Beck, Superstatistics: theory and applications. Contin. Mech. Thermodyn. 16(3), 293–304 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. C. Beck, Recent developments in superstatistics. Braz. J. Phys. 39(2A), 357–363 (2009)

    Article  ADS  Google Scholar 

  24. C. Beck, Generalized statistical mechanics of cosmic rays. Phys. A 331(1–2), 173–181 (2004)

    Article  Google Scholar 

  25. A. Ayala, M. Hentschinski, L.A. Hernández, M. Loewe, R. Zamora, Superstatistics and the effective QCD phase diagram. Phys. Rev. D 98, 114002 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  26. C.-Y. Wong, G. Wilk, L.J.L. Cirto, C. Tsallis, From QCD-based hard-scattering to nonextensive statistical mechanical descriptions of transverse momentum spectra in high-energy \(pp\) and \(p\overline{p}\) collisions. Phys. Rev. D 91, 114027 (2015)

    Article  ADS  Google Scholar 

  27. C. Beck, Superstatistics in high-energy physics. EPJA 40(3), 267–273 (2009)

    Article  ADS  Google Scholar 

  28. A.M. Reynolds, Superstatistical mechanics of tracer-particle motions in turbulence. Phys. Rev. Lett. 91(8), 084503 (2003)

    Article  ADS  Google Scholar 

  29. S. Jung, H.L. Swinney, Velocity difference statistics in turbulence. Phys. Rev. E 72(8), 026304 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  30. O. Obregón, A. Gil-Villegas, Generalized information entropies depending only on the probability distribution. Phys. Rev. E 88, 062146 (2013)

    Article  ADS  Google Scholar 

  31. K. Ourabah, M. Tribeche, Quantum entanglement and temperature fluctuations. Phys. Rev. E 95, 042111 (2017)

    Article  ADS  MATH  Google Scholar 

  32. C. Beck, E.G.D. Cohen, H.L. Swinney, From time series to superstatistics. Phys. Rev. E 72, 056133 (2005)

    Article  ADS  Google Scholar 

  33. E. Gravanis and E. Akylas, Blackbody radiation, kappa distribution and superstatistics, Phys. A, p. 126132, 2021

  34. E.T. Jaynes, F.W. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51(1), 89–109 (1963)

    Article  Google Scholar 

  35. S.J.D. Phoenix, P.L. Knight, Establishment of an entangled atom-field state in the Jaynes–Cummings model. Phys. Rev. A 44, 6023–6029 (1991)

    Article  ADS  Google Scholar 

  36. V. Bužek, H. Moya-Cessa, P.L. Knight, S.J.D. Phoenix, Schrödinger-cat states in the resonant Jaynes–Cummings model: collapse and revival of oscillations of the photon-number distribution. Phys. Rev. A 45, 8190–8203 (1992)

    Article  ADS  Google Scholar 

  37. E. Boukobza, D.J. Tannor, Entropy exchange and entanglement in the Jaynes–Cummings model. Phys. Rev. A 71, 063821 (2005)

    Article  ADS  Google Scholar 

  38. J.-L. Guo, Y.-B. Sun, Z.-D. Li, Entropy exchange and entanglement in Jaynes–Cummings model with Kerr-like medium and intensity-depend coupling. Opt. Comm. 284(3), 896–901 (2011)

    Article  ADS  Google Scholar 

  39. C. Zhu, L. Dong, H. Pu, Effects of spin-orbit coupling on Jaynes–Cummings and Tavis–Cummings models. Phys. Rev. A 94, 053621 (2016)

    Article  ADS  Google Scholar 

  40. J.G. Peixoto de Faria, M.C. Nemes, Dissipative dynamics of the Jaynes–Cummings model in the dispersive approximation: analytical results. Phys. Rev. A 59, 3918–3925 (1999)

    Article  ADS  Google Scholar 

  41. C. Tsallis, A.M.C. Souza, Constructing a statistical mechanics for Beck–Cohen superstatistics. Phys. Rev. E 67, 026106 (2003)

    Article  ADS  Google Scholar 

  42. C. Tsallis, R.S. Mendes, A.R. Plastino, The role of constraints within generalized nonextensive statistics. Phys. A 261(3–4), 534–554 (1998)

    Article  Google Scholar 

  43. J.D. Castaño-Yepes, D.A. Amor-Quiroz, Super-statistical description of thermo-magnetic properties of a system of 2D GaAs quantum dots with gaussian confinement and Rashba spin-orbit interaction. Phys. A 548, 123871 (2020)

    Article  MathSciNet  Google Scholar 

  44. J. D. Castaño-Yepes, I. A. Lujan-Cabrera, and C. F. Ramirez-Gutierrez, “Comments on “Superstatistical properties of the one-dimensional Dirac oscillator” by Abdelmalek Boumali et al.,” Phys. A–In Press, p. 125206, 2020

  45. J.D. Castaño Yepes, C.F. Ramirez-Gutierrez, Superstatistics and quantum entanglement in the isotropic spin-1/2 \(XX\) dimer from a nonadditive thermodynamics perspective. Phys. Rev. E 104, 024139 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  46. A. Rajagopal, II. Quantum Density Matrix Description of Nonextensive Systems (Springer, Berlin, 2001), pp. 99–156

    MATH  Google Scholar 

  47. G. Livadiotis, Introduction to special section on origins and properties of kappa distributions: statistical background and properties of kappa distributions in space plasmas. J. Geophys. Res. Space Phys. 120(3), 1607–1619 (2015)

    Article  ADS  Google Scholar 

  48. G. Livadiotis, D. J. McComas, Beyond kappa distributions: Exploiting tsallis statistical mechanics in space plasmas. J. Geophys. Res. Space Phys., vol. 114(A11) (2009)

  49. G. Livadiotis, D.J. McComas, Evidence of large-scale quantization in space plasmas. Entropy 15(3), 1118–1134 (2013)

    Article  ADS  Google Scholar 

  50. D. Zwillinger, A. Jeffrey, Table of Integrals, Series, and Products (Elsevier, Amsterdam, 2007)

    Google Scholar 

  51. N.J. Cerf, C. Adami, Negative entropy and information in quantum mechanics. Phys. Rev. Lett. 79, 5194–5197 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52(1), 479–487 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. A. Plastino, A.R. Plastino, On the universality of thermodynamics’ legendre transform structure. Phys. Lett. A 226(5), 257–263 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. A.M. Scarfone, H. Matsuzoe, T. Wada, Consistency of the structure of Legendre transform in thermodynamics with the Kolmogorov–Nagumo average. Phys. Lett. A 380(38), 3022–3028 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author acknowledges support from Consejo Nacional de Ciencia y Tecnología CONACyT (México) under grant number A1-S-7655. Also, the author thanks Emiliano Adrián Rodríguez Reyes and Carolina Tavares for a thorough reading of the manuscript and the language correction. Also, I thank Dr. Edgar Guzmán for his valuable comments.

Author information

Authors and Affiliations

Authors

Appendices

A Super-Statistics and Tsallis thermodynamics

The connection of SS and Tsallis thermodynamics comes from the entropy generalization for non-additive systems [52], namely:

$$\begin{aligned} S=\frac{1}{q-1}\left( 1-\text {Tr}\left[ {\hat{\rho }}^q\right] \right) \forall \;q \in {\mathbb {R}}, \end{aligned}$$
(50)

where q is the non-additive index and \({\hat{\rho }}\) is the density operator of the system. In order to mimic the main results of the Boltzmann statistics, it is argued that the Tsallis framework has to fulfil the so-called Legendre structure of thermodynamics [42], which can be demanded by fundamental arguments related to an increasing entropy and a positive-definite specific heat [53, 54]. In order to implement that idea, the internal energy U is constrained by the following average prescription:

$$\begin{aligned} U=\frac{\text {Tr}\left[ {\hat{\rho }}^q\hat{H}\right] }{\text {Tr}\left[ {\hat{\rho }}^q\right] }, \end{aligned}$$
(51)

where \(\hat{H}\) is the Hamiltonian. Then, by maximizing the functional associated with S and U, the density operator is given by:

$$\begin{aligned} {\hat{\rho }}=\frac{1}{Z}\exp _q\left( -\beta \frac{\hat{H}-U}{\text {Tr}\left[ {\hat{\rho }}^q\right] }\right) , \end{aligned}$$
(52)

where \(\beta \) is the inverse physical temperature and the partition function Z is given by

$$\begin{aligned} Z=\text {Tr}\left[ \exp _q\left( -\beta \frac{\hat{H}-U}{\text {Tr}\left[ {\hat{\rho }}^q\right] }\right) \right] . \end{aligned}$$
(53)

Equations (51)-(53) are implicit for \({\hat{\rho }}\), and their solution is not trivial. Nevertheless, there is an auxiliary form to avoid that problem. If an auxiliary density matrix \({\hat{\varrho }}\) is defined as

$$\begin{aligned} {\hat{\varrho }}=\frac{1}{{\mathcal {Z}}}\exp _q\left( -\beta ^\star \hat{H}\right) , \end{aligned}$$
(54)

where

$$\begin{aligned} {\mathcal {Z}}=\text {Tr}\left[ \exp _q\left( -\beta ^\star \hat{H}\right) \right] \end{aligned}$$
(55)

and \(\beta ^\star \) is a quasi-temperature parameter given by

$$\begin{aligned} \beta =\frac{\beta ^\star \,\text {Tr}\left[ {\hat{\varrho }}^q(\beta ^\star )\right] }{1-(1-q) \beta ^\star {\mathcal {U}}\left( \beta ^\star \right) / \text {Tr}\left[ {\hat{\varrho }}^q(\beta ^\star )\right] }, \end{aligned}$$
(56)

the following relation is found:

$$\begin{aligned} {\hat{\rho }}(\beta )= & {} {\hat{\varrho }}(\beta ^\star ), \end{aligned}$$
(57)

where \({\mathcal {U}}\) is defined in Eq. (30). Therefore, the problem for \({\hat{\rho }}\) is solved by working with \({\hat{\varrho }}\) and with Eqs. (57), together with the physical temperature parametrization of Eq. (56).

B The non-additive average photon number

For the non-extensive case, the average photon number is given by

$$\begin{aligned} {\bar{n}}_q=\frac{\text {Tr}_R\left[ {\hat{\varrho }}^q_R(\beta ^\star )\hat{n}\right] }{\text {Tr}_R\left[ {\hat{\varrho }}^q_R(\beta ^\star )\right] }=\frac{1}{\text {Tr}_R\left[ {\hat{\varrho }}^q_R(\beta ^\star )\right] }\sum _{n=0}^\infty n\left( 1+\alpha n\right) ^{\nu }, \end{aligned}$$
(58)

where \(\alpha \equiv -(1-q)\beta ^\star \omega \) and \(\nu \equiv q/(1-q)\).

In order to compute the sum above, let me introduce the regulator \(\eta \) in the following way:

$$\begin{aligned} {\mathcal {S}}(\alpha ,\nu )= & {} \sum _{n=0}^\infty n\left( 1+\alpha n\right) ^{\nu }\nonumber \\= & {} -\lim _{\eta \rightarrow 0}\frac{\partial }{\partial \eta }\sum _{n=0}^\infty \left( 1+\alpha n\right) ^{\nu }e^{-\eta n}, \end{aligned}$$
(59)

but

$$\begin{aligned} \sum _{n=0}^\infty \left( 1+\alpha n\right) ^{\nu }e^{-\eta n}=\alpha ^\nu \Phi \left( e^{-\eta },-\nu ,\frac{1}{\alpha }\right) , \end{aligned}$$
(60)

where \(\Phi (z,s,r)\) is the so-called Hurwitz–Lerch transcendent function, defined as

$$\begin{aligned} \Phi (z,s,r)=\sum _{n=0}^\infty \frac{z^n}{(n+r)^s}. \end{aligned}$$
(61)

Then,

$$\begin{aligned} {\mathcal {S}}(\alpha ,\nu )= & {} -\alpha ^\nu \lim _{\eta \rightarrow 0}\frac{\partial }{\partial \eta }\Phi \left( e^{-\eta },-\nu ,\frac{1}{\alpha }\right) \nonumber \\= & {} \alpha ^\nu \left[ \Phi \left( 1,-1-\nu ,\frac{1}{\alpha }\right) -\frac{1}{\alpha }\Phi \left( 1,-\nu ,\frac{1}{\alpha }\right) \right] . \end{aligned}$$
(62)

Therefore,

$$\begin{aligned} {\bar{n}}_q= & {} \frac{\left[ (q-1)\beta ^\star \omega \right] ^{\frac{q}{1-q}}}{\text {Tr}_R\left[ {\hat{\varrho }}^q_R(\beta ^\star )\right] }\Bigg [\Phi \left( 1,\frac{1}{q-1},\frac{1}{(q-1)\beta ^\star \omega }\right) -\frac{1}{(q-1)\beta ^\star \omega }\Phi \left( 1,\frac{q}{q-1},\frac{1}{(q-1)\beta ^\star \omega }\right) \Bigg ], \end{aligned}$$
(63)

where

$$\begin{aligned} \text {Tr}_R\left[ {\hat{\varrho }}^q_R(\beta ^\star )\right] =\left[ (q-1)\beta ^\star \omega \right] ^{\frac{q}{1-q}}\zeta _\text {H}\left( \frac{q}{q-1},\frac{1}{(q-1)\beta ^\star \omega }\right) .\nonumber \\ \end{aligned}$$
(64)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castaño-Yepes, J.D. Entropy exchange and thermal fluctuations in the Jaynes–Cummings model. Eur. Phys. J. Plus 137, 155 (2022). https://doi.org/10.1140/epjp/s13360-022-02382-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02382-7

Navigation