Skip to main content
Log in

Variations on the SU(5) axion

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The simultaneous embeddings of an axion state and a seesaw mechanism within the SU(5) Grand Unification Theory, both minimal and flipped, are systematically studied. Generically, seesaw mechanisms prevents a manifest axion Peccei–Quinn (PQ) symmetry at the GUT scale, but this does not mean no axion could emerge at the low scale. Several viable DFSZ-like scenarios are identified, both in the minimal and flipped case, and with various seesaw mechanisms, by carefully analyzing the global and local U(1) symmetries at play and their fate after the various stages of symmetry breaking. Interestingly, though these scenarios are quite different phenomenologically, and each assign specific non-manifestly SU(5) symmetric PQ charges to the SM fermions, the resulting low energy axion phenomenology is found to be particularly resilient and universal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. A similar reasoning holds for \({\mathcal {B}}+{\mathcal {L}}\) violating operators involving \(\psi _{{\mathbf {1}}}\), which cannot arise from gauge interactions. Depending on which fiveplet enters in the Yukawa coupling \({\bar{\psi }}_{\bar{\mathbf {{5}}}}^{c}{\mathbf {Y}}_{1}^{T}\psi _{{\mathbf {1}}}\), either \(\nu _{R}d_{R}q_{L}^{2}\) or \(\nu _{R}u_{R}d_{R}^{2}\) arises at the dimension-six level, the other then being of dimension eight.

  2. In this respect, it should be mentioned that the adjoint DFSZ model, with and without the type I seesaw, has been presented in Ref. [13], but the precise identification of the symmetry breaking chain, including the entanglement with \(U(1)_{{\mathcal {B}}-{\mathcal {L}}}\), and the actual PQ charges were not discussed there.

References

  1. C. Abel et al. [nEDM Collaboration], Phys. Rev. Lett. 124(8), 081803 (2020)[arXiv:2001.11966 [hep-ex]]

  2. R.D. Peccei, H.R. Quinn, Phys. Rev. Lett. 38, 1440 (1977)

    Article  ADS  Google Scholar 

  3. R.D. Peccei, H.R. Quinn, Phys. Rev. D 16, 1791 (1977)

    Article  ADS  Google Scholar 

  4. S. Weinberg, Phys. Rev. Lett. 40, 223 (1978)

    Article  ADS  Google Scholar 

  5. F. Wilczek, Phys. Rev. Lett. 40, 279 (1978)

    Article  ADS  Google Scholar 

  6. W.A. Bardeen, S.-H.H. Tye, Phys. Lett. 74B, 229 (1978)

    Article  ADS  Google Scholar 

  7. J.E. Kim, Phys. Rept. 150, 1 (1987)

    Article  ADS  Google Scholar 

  8. D.A. Dicus, E.W. Kolb, V.L. Teplitz, R.V. Wagoner, Phys. Rev. D 22, 839 (1980). https://doi.org/10.1103/PhysRevD.22.839

    Article  ADS  Google Scholar 

  9. M. Dine, W. Fischler, M. Srednicki, Phys. Lett. 104B, 199 (1981)

    Article  ADS  Google Scholar 

  10. M.B. Wise, H. Georgi, S.L. Glashow, Phys. Rev. Lett. 47, 402 (1981). https://doi.org/10.1103/PhysRevLett.47.402

    Article  ADS  Google Scholar 

  11. H. Georgi, S.L. Glashow, Phys. Rev. Lett. 32, 438–441 (1974)

    Article  ADS  Google Scholar 

  12. P.F. Pérez, C. Murgui, A.D. Plascencia, JHEP 11, 93 (2019). https://doi.org/10.1007/JHEP11(2019)093

    Article  ADS  Google Scholar 

  13. P.F. Pérez, C. Murgui, A.D. Plascencia, JHEP 01, 091 (2020). https://doi.org/10.1007/JHEP01(2020)091

    Article  ADS  Google Scholar 

  14. A. Ernst, L. di Luzio, A. Ringwald, C. Tamarit, PoS CORFU2018 (2019). https://doi.org/10.22323/1.347.0054

  15. L. di Luzio, JHEP 07, 071 (2020). https://doi.org/10.1007/JHEP07(2020)071

    Article  Google Scholar 

  16. A. Ernst, A. Ringwald, C. Tamarit, JHEP 02, 103 (2018). https://doi.org/10.1007/JHEP02(2018)103

    Article  ADS  Google Scholar 

  17. D.B. Reiss, Phys. Lett. B 109, 365–368 (1982). https://doi.org/10.1016/0370-2693(82)91091-7

    Article  ADS  Google Scholar 

  18. R. N. Mohapatra, G. Senjanovic, Z. Phys. C. 17, 53–56 (1983), https://doi.org/10.1007/BF01577819

  19. R. Holman, G. Lazarides, Q. Shafi, Phys. Rev. D 27, 995 (1983). https://doi.org/10.1103/PhysRevD.27.995

    Article  ADS  Google Scholar 

  20. B. Bajc, A. Melfo, G. Senjanovic, F. Vissani, Phys. Rev. D 73, 055001 (2006). https://doi.org/10.1103/PhysRevD.73.055001

  21. S. Bertolini, L. Di Luzio, M. Malinsky, Phys. Rev. D 85, 095014 (2012). https://doi.org/10.1103/PhysRevD.85.095014

  22. G. Altarelli, D. Meloni, JHEP 08, 021 (2013). https://doi.org/10.1007/JHEP08(2013)021

    Article  ADS  Google Scholar 

  23. K.S. Babu, S. Khan, Phys. Rev. D 92(7), 075018 (2015). https://doi.org/10.1103/PhysRevD.92.075018

    Article  ADS  Google Scholar 

  24. B. Bajc, G. Senjanovic, JHEP 08, 014 (2007). [arXiv:hep-ph/0612029 [hep-ph]]

    Article  ADS  Google Scholar 

  25. B. Bajc, M. Nemevsek, G. Senjanovic, Phys. Rev. D 76, 055011 (2007). https://doi.org/10.1103/PhysRevD.76.055011

  26. L. Di Luzio, L. Mihaila, Phys. Rev. D 87, 115025 (2013). https://doi.org/10.1103/PhysRevD.87.115025

  27. L. Di Luzio, A. Ringwald, C. Tamarit, Phys. Rev. D 989, 095011 (2018). https://doi.org/10.1103/PhysRevD.98.095011

    Article  Google Scholar 

  28. I. Dorsner, P.F. Perez, Nucl. Phys. B 723, 53–76 (2005). https://doi.org/10.1016/j.nuclphysb.2005.06.016

    Article  ADS  Google Scholar 

  29. S.M. Barr, Phys. Lett. B 112, 219–222 (1982). https://doi.org/10.1016/0370-2693(82)90966-2

    Article  ADS  Google Scholar 

  30. J.P. Derendinger, J.E. Kim, D.V. Nanopoulos, Phys. Lett. B 139, 170–176 (1984). https://doi.org/10.1016/0370-2693(84)91238-3

    Article  ADS  Google Scholar 

  31. I. Antoniadis, J.R. Ellis, J.S. Hagelin, D.V. Nanopoulos, Phys. Lett. B 194, 231–235 (1987). https://doi.org/10.1016/0370-2693(87)90533-8

    Article  ADS  Google Scholar 

  32. J.R. Ellis, J.S. Hagelin, S. Kelley, D.V. Nanopoulos, Nucl. Phys. B 311, 1–34 (1988). https://doi.org/10.1016/0550-3213(88)90141-1

    Article  ADS  Google Scholar 

  33. J. Quevillon and C. Smith, Phys. Rev. D 102, 075031 (2020) [arXiv:2006.06778 [hep-ph]]

  34. J. Quevillon, C. Smith, Eur. Phys. J. C 7910, 822 (2019). https://doi.org/10.1140/epjc/s10052-019-7304-4

    Article  ADS  Google Scholar 

  35. A. R. Zhitnitsky, Sov. J. Nucl. Phys. 31 (1980) 260 [Yad. Fiz. 31 (1980) 497]

  36. J.E. Kim, Phys. Rev. Lett. 43, 103 (1979)

    Article  ADS  Google Scholar 

  37. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 166, 493 (1980)

    Article  ADS  Google Scholar 

  38. R.N. Mohapatra, G. Senjanovic, Phys. Rev. D 27, 254 (1983)

    Article  ADS  Google Scholar 

  39. J. Hisano, H. Murayama, T. Yanagida, Phys. Lett. B 291, 263–267 (1992). https://doi.org/10.1016/0370-2693(92)91042-8

    Article  ADS  Google Scholar 

  40. J. Hisano, T. Moroi, K. Tobe, T. Yanagida, Phys. Lett. B 342, 138–144 (1995). https://doi.org/10.1016/0370-2693(94)01342-A

    Article  ADS  Google Scholar 

  41. J.D. Clarke, R.R. Volkas, Phys. Rev. D 93(3), 035001 (2016). [arXiv:1509.07243 [hep-ph]]

    Article  ADS  Google Scholar 

  42. S.M. Boucenna, Q. Shafi, Phys. Rev. D 977, 075012 (2018). https://doi.org/10.1103/PhysRevD.97.075012

    Article  ADS  Google Scholar 

  43. E. Witten, Phys. Lett. B 91, 81–84 (1980). https://doi.org/10.1016/0370-2693(80)90666-8

    Article  ADS  Google Scholar 

  44. C.A. Rodríguez, H. Kolešová, M. Malinský, Phys. Rev. D 895, 055003 (2014). https://doi.org/10.1103/PhysRevD.89.055003

    Article  Google Scholar 

  45. P.H. Frampton, S. Nandi, J.J.G. Scanio, Phys. Lett. B 85, 225–228 (1979). https://doi.org/10.1016/0370-2693(79)90584-7

    Article  ADS  Google Scholar 

  46. H. Georgi, C. Jarlskog, Phys. Lett. B 86, 297–300 (1979). https://doi.org/10.1016/0370-2693(79)90842-6

    Article  ADS  Google Scholar 

  47. P. Kalyniak, J.N. Ng, Phys. Rev. D 26, 890 (1982)

    Article  ADS  Google Scholar 

  48. P. Eckert, J.M. Gerard, H. Ruegg, T. Schucker, Phys. Lett. B 125, 385–388 (1983)

    Article  ADS  Google Scholar 

  49. R. Barbieri, J.R. Ellis, M.K. Gaillard, Phys. Lett. B 90, 249–252 (1980). https://doi.org/10.1016/0370-2693(80)90734-0

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the IN2P3 Master project “Axions from Particle Physics to Cosmology.” J.Q.’s work is also supported by the IN2P3 Master project Théorie-BSMGA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérémie Quevillon.

Fermion masses

Fermion masses

The fermion masses are not correctly reproduced in the minimal SU(5) model. The situation is similar in the PQ and DFSZ axion models built in that context since introducing a second Higgs fiveplets does not alter the relationship between \(m_{d}\) and \(m_{e}\), which both derive from the same Yukawa coupling. To cure for this, there are two solutions. The first is to introduce a new scalar multiplet. To induce non-trivial corrections to the Yukawa couplings, this multiplet cannot transform as \({\mathbf {5}}\), and by inspection, the simplest choice is as \({{\mathbf {45}}}\) [45, 46]. The second solution is to introduce higher-dimensional operators, involving both \(h_{\mathbf {5}}\) and \({\mathbf {H}}_{\mathbf {24}}\), thus exploiting the fact that \({{\mathbf {45}}} \subset {\mathbf {5}}\otimes {\mathbf {24}}\). The goal of this appendix is to present, briefly and in general terms, how these two solutions can be adapted to the PQ and DFSZ models.

1.1 The \(h_{\mathbf{{45}}}\) and axions

Let us first consider the introduction of the \(h_{{\mathbf {45}}}\). Concentrating on the fermion masses, two new Yukawa couplings can be constructed

$$\begin{aligned} {\mathcal {L}}_{\text {Yukawa}}^{{\mathbf {45}}}=-\sqrt{3/8}\varepsilon _{ABCDE} ({\bar{\chi }}_{{{\mathbf {10}}}}^{c})^{AB}{\mathbf {Y}}_{10}^{\prime } (\chi _{{{\mathbf {10}}}})^{CF}(h_{{\mathbf {45}}})_{F}^{DE}-\sqrt{12}(\bar{\psi }_{\bar{\mathbf {{5}}}}^{c})_{C}{\mathbf {Y}}_{5}^{\prime }(\chi _{{{\mathbf {10}}}})^{AB}(h_{{\mathbf {45}}}^{\dagger })_{AB}^{C}+h.c.\;, \end{aligned}$$
(122)

and they permit to induce reasonable fermion masses once SU(5) breaks down. When plugging in the specific structure of the vacuum [45,46,47,48]

$$\begin{aligned} ({\mathbf {v}}_{{\mathbf {45}}})_{C}^{AB}\equiv \langle 0|(h_{{\mathbf {45}}})_{C} ^{AB}|0\rangle =\frac{v_{45}}{4\sqrt{3}}(\delta _{C}^{A}-4\delta _{4}^{A} \delta _{C}^{4})\delta _{5}^{B}-(A\leftrightarrow B)\;, \end{aligned}$$
(123)

one finds in the one-fiveplet case,

$$\begin{aligned} {\mathbf {Y}}_{u}&={\mathbf {Y}}_{10}\sin \alpha +{\mathbf {Y}}_{10}^{\prime } \cos \alpha ,\;\;{\mathbf {Y}}_{10}={\mathbf {Y}}_{10}^{T},\;{\mathbf {Y}}_{10}^{\prime }=-{\mathbf {Y}}_{10}^{\prime T}\;, \end{aligned}$$
(124a)
$$\begin{aligned} {\mathbf {Y}}_{d}&={\mathbf {Y}}_{5}\sin \alpha +{\mathbf {Y}}_{5}^{\prime }\cos \alpha ,\;{\mathbf {Y}}_{e}={\mathbf {Y}}_{5}^{T}\sin \alpha -3{\mathbf {Y}}_{5}^{\prime T}\cos \alpha \;, \end{aligned}$$
(124b)

where \(\tan \alpha =v_{5}/v_{45}\), \(v^{2}=v_{5}^{2}+v_{45}^{2}\approx 246\,\)GeV, and \(v{\mathbf {Y}}_{u,d,e}\rightarrow \sqrt{2}{\mathbf {m}}_{u,d,e}\) in the mass eigenstate basis.

For axion models, the \(U(1)_{1}\otimes U(1)_{2}\) symmetry forces the \(h_{{\mathbf {45}}}\) to be aligned with \(h_{2,{\mathbf {5}}}\), with thus only the \({\mathbf {Y}}_{5}^{\prime }\) Yukawa coupling of Eq. (122) and no coupling to \({\bar{\chi }}_{{{\mathbf {10}}}}^{c}\chi _{{{\mathbf {10}}}}\). Also, because \(h_{{\mathbf {45}}}\) is aligned with \(h_{2,{\mathbf {5}}}\), the symmetry is not extended and there is no additional Goldstone boson.

This may be a bit surprising because the potential can be constructed as invariant under \(U(1)_{1}\otimes U(1)_{2}\otimes U(1)_{45}\). What happens in that case is that when both \(h_{{\mathbf {45}}}\) and \(h_{2,{\mathbf {5}}}\) couple to the same fermion pair \({\bar{\psi }}_{\bar{\mathbf {{5}}}}^{c}\chi _{{{\mathbf {10}}}}\), we can construct the dimension-four effective potential term

$$\begin{aligned} {\mathcal {L}}_{eff}=c_{eff}\langle {\mathbf {Y}}_{10}^{\dagger }{\mathbf {Y}} _{10}{\mathbf {Y}}_{5}^{\dagger }{\mathbf {Y}}_{5}^{\prime }\rangle (h_{1,{\mathbf {5}} }^{\dagger })_{C}(h_{1,{\mathbf {5}}})^{B}(h_{2,{\mathbf {5}}})^{A}(h_{{\mathbf {45}} }^{\dagger })_{AB}^{C}+h.c.\ , \end{aligned}$$
(125)

where we have used \((h_{{\mathbf {45}}})_{C}^{AB}=-(h_{{\mathbf {45}}})_{C}^{BA}\) and \((h_{{\mathbf {45}}})_{A}^{AB}=0\). Thus, the \(U(1)_{1}\otimes U(1)_{2}\otimes U(1)_{45}\) symmetry cannot exist in the presence of the Yukawa couplings. Yet, this specific coupling cannot induce a mass for the pseudoscalar states because of the antisymmetry of \(h_{{\mathbf {45}}}\). But with the help of \(h_{1,{\mathbf {5}}}\) exchanges, the above coupling induces

$$\begin{aligned} {\mathcal {L}}_{eff}\sim c_{eff}^{2}\langle {\mathbf {Y}}_{10}^{\dagger } {\mathbf {Y}}_{10}{\mathbf {Y}}_{5}^{\dagger }{\mathbf {Y}}_{5}^{\prime }\rangle ^{2}(h_{2,{\mathbf {5}}})^{A}(h_{{\mathbf {45}}}^{\dagger })_{AB}^{C}(h_{{\mathbf {45}} }^{\dagger })_{DC}^{B}(h_{2,{\mathbf {5}}})^{D}\ , \end{aligned}$$
(126)

which does contribute to pseudoscalar masses. To check that let us plug in the polar representation of the scalar fields, with

$$\begin{aligned} h_{{\mathbf {45}}}=\frac{1}{\sqrt{2}}\exp (i\eta _{45}/v_{45} ){\mathbf {v}}_{{\mathbf {45}}}+...\ ,\ h_{i,{\mathbf {5}}}=\frac{1}{\sqrt{2}}\exp (i\eta _{i}/v_{i}){\mathbf {v}}_{i,{\mathbf {5}}}+...\ , \end{aligned}$$
(127)

with \({\mathbf {v}}_{{\mathbf {45}}}\) given in Eq. (123) and \({\mathbf {v}}_{i,{\mathbf {5}}}=(0,0,0,0,v_{i})^{T}\). Under the assumption that the scalar potential is invariant under \(U(1)_{1}\otimes U(1)_{2}\otimes U(1)_{45}\) at leading order, only the term in Eq. (126) contributes and gives

$$\begin{aligned} V(\eta _{1},\eta _{2},\eta _{45})\sim c_{eff}^{2}\langle {\mathbf {Y}}_{10}^{\dagger }{\mathbf {Y}}_{10}{\mathbf {Y}}_{5}^{\dagger }{\mathbf {Y}}_{5}^{\prime }\rangle ^{2} \cos \left( 2\frac{\eta _{2}}{v_{2}}-2\frac{\eta _{45}}{v_{45}}\right) \ . \end{aligned}$$
(128)

The massive pseudoscalar is thus the combination \(\pi ^{0}\sim \eta _{2}/v_{2}-\eta _{45}/v_{45}\). For the massless states, first note that the electrically neutral state in \(h_{{\mathbf {45}}}\) belongs to a colorless \(SU(2)_{L}\) doublet with hypercharge 1, as do those in \(h_{1,{\mathbf {5}}}\) and \(h_{2,{\mathbf {5}}}\). So, the WBG of the Z boson must be the combination \(G^{0}\sim v_{1}\eta _{1}+v_{2}\eta _{2}+v_{45}\eta _{45}\). Knowing \(\pi ^{0}\) and \(G^{0}\), the mixing matrix is immediate to construct

$$\begin{aligned} \left( \begin{array} [c]{c} G^{0}\\ a^{0}\\ \pi ^{0} \end{array} \right) =\left( \begin{array} [c]{ccc} \sin \beta &{} \cos \beta \sin \alpha &{} \cos \beta \cos \alpha \\ \cos \beta &{} -\sin \beta \sin \alpha &{} -\sin \beta \cos \alpha \\ 0 &{} \cos \alpha &{} -\sin \alpha \end{array} \right) \left( \begin{array} [c]{c} \eta _{1}\\ \eta _{2}\\ \eta _{45} \end{array} \right) \ ,\ \end{aligned}$$
(129)

where we define

$$\begin{aligned} \tan \alpha =\frac{v_{2}}{v_{45}}\ ,\ \tan \beta =\frac{v_{1}}{\sqrt{v_{2} ^{2}+v_{45}^{2}}}\ . \end{aligned}$$
(130)

From this, the PQ charge of the weak doublets inside \(h_{1,{\mathbf {5}}}\), \(h_{2,{\mathbf {5}}}\), and \(h_{{\mathbf {45}}}\) are found to be x, \(-1/x\), and \(-1/x\), respectively. Thus, fermions have the same PQ charges as without the \(h_{{\mathbf {45}}}\). One can also check that their couplings to the axion are not altered. This is the simplest to see in the linear representation, in which the non-derivative couplings of the pseudoscalar states always enter in the combination \(v_{i}+{\text {Re}}h_{i}^{0}+i\eta _{i}\). In particular, all dependencies on \(\alpha \) cancel out of the axion couplings to fermions, leaving the same mass-dependent couplings as in the THDM,

$$\begin{aligned} {\mathcal {L}}_{a^{0}f{\bar{f}}}=\left( x{\bar{u}}_{L}{\mathbf {m}}_{u}u_{R}-\frac{1}{x}{\bar{d}}_{L}{\mathbf {m}}_{d}d_{R}-\frac{1}{x}{\bar{e}}_{L}{\mathbf {m}}_{e} e_{R}\right) \frac{a^{0}}{v}\;, \end{aligned}$$
(131)

with \(x=1/\tan \beta \) and \(v^{2}=v_{1}^{2}+v_{2}^{2}+v_{45}^{2}\).

1.2 Effective Yukawa couplings and axions

Alternatively to the \(h_{{\mathbf {45}}}\), higher-dimensional operators can be introduced [49]. The same can be done in PQ and DFSZ axion models, provided these operators are constructed as invariant under the \(U(1)_1\otimes U(1)_2\) symmetry. For instance, in the PQ model or in the singlet DFSZ model, given the charges in Eq. (21), the leading corrections to the fermion masses can arise from

$$\begin{aligned} {\mathcal {L}}_{\text {Yukawa}}^{\dim -5}&=-\frac{\sqrt{2}}{\Lambda }(h_{2,{\mathbf {5}}}^{\dagger })_{A}({\mathbf {H}}_{{\mathbf {24}}})_{C}^{B}(\bar{\psi }_{\bar{\mathbf {{5}}}}^{c})_{B}{\mathbf {Y}}_{5}^{\prime }(\chi _{{{\mathbf {10}}}})^{AC}+\frac{2}{\Lambda }\varepsilon _{ABCDE}(\bar{\chi }_{{{\mathbf {10}}}}^{c})^{AB}{\mathbf {Y}}_{10}^{\prime }(\chi _{{\mathbf {10}} })^{CF}(h_{1,{\mathbf {5}}})^{D}({\mathbf {H}}_{{\mathbf {24}}})_{F}^{E}\nonumber \\&\;\;\;\;+\frac{1}{\Lambda }(h_{2,{\mathbf {5}}}^{\dagger })_{C}({\mathbf {H}} _{{\mathbf {24}}})_{A}^{C}({\bar{\psi }}_{\bar{\mathbf {{5}}}}^{c} )_{B}{\mathbf {Y}}_{5}^{\prime \prime }(\chi _{{{\mathbf {10}}}})^{AB}+\frac{1}{\Lambda }\varepsilon _{ABCDE}({\bar{\chi }}_{{{\mathbf {10}}}}^{c})^{AB} {\mathbf {Y}}_{10}^{\prime \prime }(\chi _{{{\mathbf {10}}}})^{CD}(h_{1,{\mathbf {5}}} )^{F}({\mathbf {H}}_{{\mathbf {24}}})_{F}^{E}\;. \end{aligned}$$
(132)

The \({\mathbf {Y}}_{5}^{\prime \prime }\) and \({\mathbf {Y}}_{10}^{\prime \prime }\) corrections can be absorbed into the leading Yukawa couplings since \((h_{1,{\mathbf {5}}})^{A}({\mathbf {H}}_{{\mathbf {24}}})_{A}^{B}\) transforms as \({\mathbf {5}} \). The \({\mathbf {Y}}_{5}^{\prime }\) and \({\mathbf {Y}}_{10}^{\prime }\) represent genuine corrections, and give

$$\begin{aligned} {\mathcal {L}}_{\text {Yukawa}}^{\dim -5}\overset{\text {SSB}}{\rightarrow } -\frac{v_{5}v_{24}}{\sqrt{2}\Lambda }\cos \beta ({\bar{d}}_{R}^{i}{\mathbf {Y}} _{5}^{\prime }d_{L}^{i}-\frac{3}{2}{\bar{e}}_{R}{\mathbf {Y}}_{5}^{\prime T} e_{L})-\frac{v_{5}v_{24}}{\sqrt{2}\Lambda }\sin \beta {\bar{u}}_{R}^{i} (4{\mathbf {Y}}_{10}^{\prime T}-{\mathbf {Y}}_{10}^{\prime })u_{L}^{i}+h.c.\;. \end{aligned}$$
(133)

Note that compared to adding the \(h_{{\mathbf {45}}}\), effective operators in general alter both the down and up-type Yukawa couplings.

The situation is a bit different in the adjoint DFSZ model, because the \({\mathbf {H}}_{{\mathbf {24}}}\) has a \(U(1)_{1}\otimes U(1)_{2}\) charge. As a result, no operator can be constructed at the dimension-five level, and the leading corrections arise rather at the dimension-six level, with for example

$$\begin{aligned} {\mathcal {L}}_{\text {Yukawa}}^{\dim -6}=\frac{\sqrt{2}}{\Lambda ^{2}}\bar{\psi }_{\bar{\mathbf {{5}}}}^{c}{\mathbf {Y}}_{5}^{a}\chi _{{\mathbf {10}} }{\mathbf {H}}_{{\mathbf {24}}}^{2}h_{1,{\mathbf {5}}}^{\dagger }+\frac{\sqrt{2} }{\Lambda ^{2}}{\bar{\psi }}_{\bar{\mathbf {{5}}}}^{c}{\mathbf {Y}}_{5}^{b} \chi _{{{\mathbf {10}}}}{\mathbf {H}}_{{\mathbf {24}}}^{\dagger }{\mathbf {H}}_{{{\mathbf {24}}} }h_{2,{\mathbf {5}}}^{\dagger }+... \ , \end{aligned}$$
(134)

where for both terms, the SU(5) indices can be contracted in four different ways. Provided \(v_{24}\) is not too small compared to \(\Lambda \), these corrections are as effective as those of dimension-five to correct the fermion mass relations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quevillon, J., Smith, C. Variations on the SU(5) axion. Eur. Phys. J. Plus 137, 141 (2022). https://doi.org/10.1140/epjp/s13360-021-02319-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02319-6

Navigation