Skip to main content
Log in

Soliton molecules, asymmetric solitons and interactions with T-breathers/M-lumps of the (3+1)-dimensional KDKK equation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The (3+1)-dimensional Konopelchenko–Dubrovsky–Kaup–Kupershmidt (KDKK) equation is an important integrable model, which has been widely used in fluid mechanics, plasma physics and ocean dynamics. In this paper, first we obtain soliton molecules, asymmetric solitons of the KDKK equation via using a velocity resonant principle. Next, we construct two types of interaction solutions via different composite methods: one is the interaction solution between a soliton molecule and T-breathers by using the velocity resonant principle and complex conjugate constraints. The other is the interaction solution between a soliton molecule and M-lumps. When \(M=1\), the interaction solution is obtained by using the velocity resonant principle and long wave limit. When \(M\ge 2\), the interaction solution is obtained by using a new composite method of the velocity resonant principle and partial degeneration of breathers. Dynamical behaviors of the solutions are discussed theoretically and numerically. The method in the paper is very effective that can be employed to construct soliton molecules, asymmetric solitons and interaction solutions of other nonlinear differential equations. The results obtained may be helpful in studying the propagation phenomena of nonlinear localized waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I.V. Barashenkov, Y.S. Smirnov, N.V. Alexeeva, Phys. Rev. E 57, 2350–2364 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  2. I.V. Barashenkov, E.V. Zemlyanaya, Phys. Rev. Lett. 83, 2568–2571 (1999)

    Article  ADS  Google Scholar 

  3. N. Akhmediev, A. Ankiewicz, Chaos 10, 600–612 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  4. M. Stratmann, T. Pagel, F. Mitschke, Phys. Rev. Lett. 95, 143902 (2005)

    Article  ADS  Google Scholar 

  5. K. Lakomy, R. Nath, L. Santos, Phys. Rev. A 86, 013610 (2012)

    Article  ADS  Google Scholar 

  6. G. Herink, F. Kurtz, B. Jalali, D. Solli, C. Ropers, Science 356, 50–54 (2017)

    Article  ADS  Google Scholar 

  7. X.M. Liu, X.K. Yao, Y.D. Cui, Phys. Rev. Lett. 121, 023905 (2018)

    Article  ADS  Google Scholar 

  8. C. Wang, L. Wang, X.H. Li, W.F. Luo, T.C. Feng, Y. Zhang, P.L. Guo, Y.Q. Ge, Nanotechnology 30, 025204 (2019)

    Article  ADS  Google Scholar 

  9. Z.Q. Wang, K. Nithyanandan, A. Coillet, P. Tchofo-Dinda, P. Grelu, Nat. Commun. 10, 830 (2019)

    Article  Google Scholar 

  10. S.Y. Lou. ArXiv: 1909.03399v1. (2019)

  11. Z.W. Yan, S.Y. Lou, Appl. Math. Lett. 104, 106271 (2020)

    Article  MathSciNet  Google Scholar 

  12. D.H. Xu, S.Y. Lou, Acta Phys. Sin. 69, 014208 (2020). (in Chinese)

    Google Scholar 

  13. Z. Zhang, X.Y. Yang, B. Li, Appl. Math. Lett. 103, 106168 (2020)

    Article  MathSciNet  Google Scholar 

  14. C.J. Cui, X.Y. Tang, Y.J. Cui, Appl. Math. Lett. 102, 106109 (2020)

    Article  MathSciNet  Google Scholar 

  15. Z. Zhang, X.Y. Yang, B. Li, Nonlinear Dyn. 100, 1551–1557 (2020)

    Article  Google Scholar 

  16. Z. Zhang, S.X. Yang, B. Li, Chin. Phys. Lett. 36, 13–16 (2019)

    Article  Google Scholar 

  17. J.J. Dong, B. Li, M.W. Yuen, Commun. Theor. Phys. 72, 7–14 (2020)

    Article  Google Scholar 

  18. G.B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974)

    MATH  Google Scholar 

  19. P.K. Kundu, Fluid Mechanics (Academic Press, San Diego, 1990)

    MATH  Google Scholar 

  20. H. Lamb, Hydrodynamics, 6th edn. (Cambridge University Press, New York, 1945)

    MATH  Google Scholar 

  21. X.Y. Wu, B. Tian, H.P. Chai, Y. Sun, Mod. Phys. Lett. B 31, 1750122 (2017)

    Article  ADS  Google Scholar 

  22. X.W. Yan, S.F. Tian, X.B. Wang, T.T. Zhang, Int. J. Comput. Math. 96, 1839–1848 (2019)

    Article  MathSciNet  Google Scholar 

  23. L.L. Feng, S.F. Tian, H. Yan, L. Wang, T.T. Zhang, Eur. Phys. J. Plus 131, 241–250 (2016)

    Article  Google Scholar 

  24. H.C. Ma, Q.X. Cheng, A.P. Deng, Commun. Theor. Phys. 72, 3–9 (2020)

    Google Scholar 

  25. P.S. Yuan, J.X. Qi, Z.L. Li, H.L. An, Chin. Phys. B 30, 040503 (2021)

    Article  ADS  Google Scholar 

  26. Z.Z. Lan, Y.T. Gao, J.W. Yang, C.Q. Su, Q.M. Wang, Mod. Phys. Lett. B 30, 1650265 (2016)

    Article  ADS  Google Scholar 

  27. X.Y. Yang, R. Fan, B. Li, Phys. Scr. 95, 045213 (2020)

    Article  ADS  Google Scholar 

  28. W.Q. Peng, S.F. Tian, T.T. Zhang, Phys. Lett. A 382, 2701–2708 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  29. L.L. Feng, S.F. Tian, X.B. Wang, T.T. Zhang, Front. Math. China 14, 631–643 (2019)

    Article  MathSciNet  Google Scholar 

  30. X. LV, J. Li, Nonlinear Dyn. 77, 135–143 (2014)

  31. X.P. Xin, X.Q. Liu, L.L. Zhang, Appl. Math. Comput. 215, 3669–3673 (2010)

    MathSciNet  Google Scholar 

  32. R. Hirota, The Direct Method in Soliton Theory (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to the referees for the kind comments and suggestions. The authors are grateful to Professor Haixing Zhu for his warm-hearted help and discussions in the revision. This work is supported by the National Natural Science Foundation of China under Grant No. 11775116 and Jiangsu Qinglan High-level Talent Project.

Author information

Authors and Affiliations

Authors

Contributions

JQ helped in investigation, software, writing original draft; ZL developed the software and validated the study; HA contributed to methodology, writing—review & editing, supervision.

Corresponding author

Correspondence to Hongli An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, J., Li, Z. & An, H. Soliton molecules, asymmetric solitons and interactions with T-breathers/M-lumps of the (3+1)-dimensional KDKK equation. Eur. Phys. J. Plus 136, 1209 (2021). https://doi.org/10.1140/epjp/s13360-021-02064-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02064-w

Navigation