Skip to main content
Log in

Numerical study of magnetic field effect on natural convection heat and mass transfers in a square enclosure containing non-Newtonian fluid and submitted to horizontal temperature and concentration gradients

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We study numerically natural convection driven heat and mass transfers in a square enclosure filled with electrically conducting non-Newtonian binary mixture in the presence of tilted external magnetic field. Dirichlet boundary conditions for the temperature and the concentration are applied to the vertical walls of the enclosure, while the two horizontal ones are assumed impermeable and insulated. A uniform magnetic field inclined with an angle θ relative to the horizontal axis is externally applied. Relevant parameters of the present problem are the Prandtl number, Pr, thermal Rayleigh number, RaT, Hartmann number, Ha, Lewis number, Le, buoyancy ratio, N, and behavior index, n. The numerical simulations are based on the complete governing equations for two-dimensional flows. The combined effect of behavior index and certain governing parameters on the flow structure and the heat and mass transfers is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(\overrightarrow {{B_{0}^{\prime } }}\) :

Applied magnetic field

D:

Mass diffusivity

g :

Gravitational acceleration

\(H^{\prime}\) :

Height of the enclosure

Ha :

Hartmann number

k :

Consistency index for a power-law fluid

Le :

Lewis number

N :

Buoyancy ratio

n :

Behavior index of power-law fluid

Nu :

Nusselt number

Nu r :

Ratio of Nusselt number

Pr :

Prandtl number

\(Ra_{T}\) :

Thermal Rayleigh number

S:

Dimensionless concentration

Sh :

Sherwood number

Sh r :

Ratio of Sherwood number

T :

Dimensionless temperature

\(\Delta T\) :

Characteristic difference of temperature

\(\Delta S\) :

Characteristic difference of concentration

\((u,v)\) :

Dimensionless axial and transverse velocities

\((x,y)\) :

Dimensionless axial and transverse co-ordinates

α :

Thermal diffusivity of fluid

\(\beta_{S}\) :

Solutal expansion coefficient of fluid

\(\beta_{T}\) :

Thermal expansion coefficient of fluid

θ :

Inclination angle of the applied magnetic field

λ :

Thermal conductivity of fluid

\(\mu_{a}\) :

Dimensionless apparent viscosity of fluid

ρ :

Density of fluid

\(\sigma\) :

Electrical conductivity of fluid

\(\psi\) :

Stream function

\(\nabla\) :

Nabla operator

':

Dimensional variable

C:

Cold wall

H:

Hot wall

max:

Maximum value

References

  1. S. Ostrach, Natural convection with combined driving forces, Physico Chem. Hydrodyn. 1, (1980)

  2. R. Viskanta, T.L. Bergman, F.P. Incopera, Double-diffusive natural convection in Natural Convection, Fundamentals and Applications, Hemisphere, Washington DC (1985)

  3. M. Sathiyamoorthy, A. Chamkha, Effect of magnetic field on natural convection flow in a liquid gallium filled square cavity for linearly heated side wall(s). Int. J. Therm. Sci. 49, 1856–1865 (2010). https://doi.org/10.1016/j.ijthermalsci.2010.04.014

    Article  Google Scholar 

  4. V.R. Gowariker, N.V. Viswanathan, J. Sreedhar, Polymer Science (New Age International (P) Limited publishers, Bangalore, 2001)

    Google Scholar 

  5. C.A. Harper, Handbook of Plastics Elastomers and Composites, 3rd edn. (McGraw Hill Professional Book Group, New York, 1996)

    Google Scholar 

  6. R. Moreau, Magnetohydrodynamics (Kluwer Academic Publishers, The Nelherlands, 1990)

    Book  Google Scholar 

  7. P.A. Davidson, An Introduction to Magnetohydrodynamic (Cambridge University Press, 2001)

    Book  Google Scholar 

  8. G.M. Oreper, J. Szekely, The effect of an externally imposed magnetic field on buoyancy driven flow in a rectangular cavity. J. Cryst. Growth 64, 505–515 (1983). https://doi.org/10.1016/0022-0248(83)90335-4

    Article  ADS  Google Scholar 

  9. H. Ozoe, K. Okada, The effect of the direction of the external magnetic field on the three-dimensional natural convection in a cubical enclosure. Int. J. Heat Mass Transf. 32, 1939–1954 (1989). https://doi.org/10.1016/0017-9310(89)90163-4

    Article  MATH  Google Scholar 

  10. T.P. Garandet, T. Alboussiere, Buoyancy driven convection in a rectangular enclosure with a transverse magnetic field. Int. J. Heat Mass Transf. 35, 741–748 (1992). https://doi.org/10.1016/0017-9310(92)90242-K

    Article  MATH  Google Scholar 

  11. M. Venkatachalappa, C.K. Subbaraya, Natural convection in a rectangular enclosure in the presence of a magnetic field with uniform heat flux from the side walls. Acta Mech. 96, 13–26 (1993). https://doi.org/10.1007/BF01340696

    Article  MATH  Google Scholar 

  12. N. Rudraiah, R.M. Barron, M. Venkatachalappa, C.K. Subbaraya, Effect of a magnetic field on free convection in a rectangular enclosure. Int. J. Eng. Sci. 33, 1075–1084 (1995). https://doi.org/10.1016/0020-7225(94)00120-9

    Article  MATH  Google Scholar 

  13. S. Alchaar, P. Vasseur, E. Bilgen, Natural convection heat transfer in a rectangular enclosure with a transverse magnetic field. J. Heat Transfer. 117, 668–673 (1995). https://doi.org/10.1115/1.2822628

    Article  Google Scholar 

  14. S. Alchaar, P. Vasseur, E. Bilgen, The effect of a magnetic field on natural convection in a shallow cavity heated from below. Chem. Eng. Commun. 134, 195–209 (1995). https://doi.org/10.1080/00986449508936332

    Article  Google Scholar 

  15. U. Burr, U. Muller, Rayleigh Bénard convection in liquid metal layers under the influence of a horizontal magnetic field. J. Fluid Mech. 453, 345–369 (2002). https://doi.org/10.1017/S002211200100698X

    Article  ADS  MATH  Google Scholar 

  16. A.J. Chamkha, H.A. Naser, Hydromagnetic double-diffusive convection in a rectangular enclosure with opposing temperature and concentration gradients. Int. J. Heat Mass Transf 45, 2465–2483 (2002). https://doi.org/10.1016/S0017-9310(01)00344-1

    Article  MATH  Google Scholar 

  17. A.J. Chamkha, H.A. Naser, Hydromagnetic double-diffusive convection in a rectangular enclosure with uniform side heat and mass fluxes and opposing temperature and concentration gradients. Int J Therm Sci 41, 936–948 (2002). https://doi.org/10.1016/S1290-0729(02)01386-8

    Article  MATH  Google Scholar 

  18. U. Burr, L. Barleon, P. Jochmann, A. Tsinober, Magnetohydrodynamic convection in a vertical slot with horizontal magnetic field. J. Fluid Mech 475, 21–40 (2003). https://doi.org/10.1017/S0022112002002811

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. M.C. Ece, E. Buyuk, Natural-convection flow under a magnetic field in an inclined rectangular enclosure heated and cooled on adjacent walls. Fluid Dyn Res. 38, 564–590 (2006). https://doi.org/10.1016/j.fluiddyn.2006.04.002

    Article  ADS  MATH  Google Scholar 

  20. M. Pirmohammadi, M. Ghassemi, Effect of magnetic field on convection heat transfer inside a tilted square enclosure. Int. Commun. Heat Mass Transf. 36, 776–780 (2009). https://doi.org/10.1016/j.icheatmasstransfer.2009.03.023

    Article  Google Scholar 

  21. B. Ghasemi, S.M. Aminossadati, A. Raisi, Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int J Therm Sci. 50, 1748–1756 (2011). https://doi.org/10.1016/j.ijthermalsci.2011.04.010

    Article  Google Scholar 

  22. G. Kefayati, Lattice Boltzmann simulation of natural convection in nanofluid-filled 2D long enclosures at presence of magnetic field, Theor Comput. Fluid Dyn. 27, 865–883 (2013). https://doi.org/10.1007/s00162-012-0290-x

    Article  Google Scholar 

  23. C. Maatki, K. Ghachem, L. Kolsi, A.H. Kadhim, M.N. Borjini, H. Ben Aissia, Inclination effects of magnetic field direction in 3D double-diffusive natural convection. Appl. Math. Comput.. 273, 178–189 (2016). https://doi.org/10.1016/j.amc.2015.09.043

    Article  MathSciNet  MATH  Google Scholar 

  24. M.A. Teamah, A.I. Shehata, Magnetohydrodynamic double diffusive natural convection in trapezoidal cavities. AEJ 55, 1037–1046 (2016). https://doi.org/10.1016/j.aej.2016.02.033

    Article  Google Scholar 

  25. R. Nithish, K. Murugesan, Magnetic field influence on double-diffusive natural convection in a square cavity – a numerical study. Numer. Heat Transf. Part A Appl. 71, 1–28 (2017). https://doi.org/10.1080/10407782.2016.1277922

    Article  Google Scholar 

  26. P.X. Yu, Z. Xiao, W. Shuang, Z.F. Tian, High accuracy numerical investigation of double-diffusive convection in a rectangular cavity under a uniform horizontal magnetic field and heat source. Int. J. Heat Mass Transf. 110, 613–628 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.068

    Article  Google Scholar 

  27. T.R. Mahapatra, B.C. Saha, D. Pal, Magnetohydrodynamic double diffusive natural convection for nanofluid within a trapezoidal enclosure. J. Comput. Appl. Math. 37, 6132–6151 (2018). https://doi.org/10.1007/s40314-018-0676-5

    Article  MathSciNet  MATH  Google Scholar 

  28. P.X. Yu, J.X. Qiu, Q. Qin, Z.F. Tian, Numerical investigation of natural convection in a rectangular cavity under different directions of uniform magnetic field. Int. J. Heat Mass Transf. 67, 1131–1144 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.087

    Article  Google Scholar 

  29. G. Kefayati, Simulation of magnetic field effect on natural convection of non-Newtonian power-law fluids in a sinusoidal heated cavity using FDLBM. Int. Commun. Heat Mass Transf. 53, 139–153 (2014). https://doi.org/10.1016/j.icheatmasstransfer.2014.02.026

    Article  Google Scholar 

  30. G. Kefayati, FDLBM simulation of magnetic field effect on natural convection of non-Newtonian power-law fluids in a linearly heated cavity. J. Comput. Appl. Math. 256, 87–99 (2014). https://doi.org/10.1016/j.powtec.2014.02.014

    Article  Google Scholar 

  31. G. Kefayati, Mesoscopic simulation of magnetic field effect on natural convection of power-law fluids in a partially heated cavity. Chem. Eng. Res. Des. 94, 337–354 (2015). https://doi.org/10.1016/j.cherd.2014.08.014

    Article  Google Scholar 

  32. M. Poonia, Computational study on MHD power-law fluid in tilted enclosure having sinusoidal heated sidewall. Multidiscip. Model. Mater. Struct. (2020). https://doi.org/10.1108/MMMS-08-2019-0154

    Article  Google Scholar 

  33. L. Wang, Z. Chai, B. Shi, Lattice Boltzmann simulation of magnetic field effect on natural convection of power-law nanofluids in rectangular enclosures. Adv. Appl. Math. Mech. 9, 1094–1110 (2016). https://doi.org/10.4208/aamm.OA-2016-0066

    Article  MathSciNet  Google Scholar 

  34. H.A. Farooq, H.K. Hamzah, K. Egab, M. Arıcı, A. Shahsavar, Non-Newtonian nanofluid natural convection in a U-shaped cavity under magnetic field. Multidiscip. Model. Mater. Struct. (2020). https://doi.org/10.1016/j.ijmecsci.2020.105887

    Article  Google Scholar 

  35. V. Shatrov, G. Mutschke, G. Gerbeth, Three-dimensional linear stability analysis of lid-driven magnetohydrodynamic cavity flow. Phys. Fluids 15, 2141–2151 (2003). https://doi.org/10.1063/1.1582184

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. S.V. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere, Washington, DC, USA, 1980)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Makayssi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makayssi, T., Lamsaadi, M. & Kaddiri, M. Numerical study of magnetic field effect on natural convection heat and mass transfers in a square enclosure containing non-Newtonian fluid and submitted to horizontal temperature and concentration gradients. Eur. Phys. J. Plus 136, 996 (2021). https://doi.org/10.1140/epjp/s13360-021-01986-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01986-9

Navigation