Skip to main content
Log in

Numerical simulation of double-diffusive natural convection in an enclosure in the presence of magnetic field with heat-conducting partition using lattice Boltzmann method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present study, the effect of magnetic field on double-diffusive natural convection in an enclosure with heat-conducting partition is studied. Constant temperatures and concentrations are imposed along the left and right walls, and horizontal walls are insulated. The lattice Boltzmann method is used to solve the dimensionless governing equations. Streamlines, isotherms, isoconcentrations, and average Nusselt and Sherwood number for various values of thermal Rayleigh number (103 ≤ Ra ≤ 105), Hartmann number (0 ≤ Ha ≤ 100), the partition thickness (0.05 ≤ W ≤ 1.0), the partition location (0.25 ≤ Lx ≤ 0.75), partition length (0.25 ≤ Lf ≤ 1.0), magnetic field angle (0° ≤ ϕ ≤ 90°), and buoyancy ratio (− 5 ≤ N ≤ 5) are obtained. The results indicate that the heat and mass transfer mechanisms are influenced by Hartmann number. The flow pattern are significantly depend on the magnetic field angle. In addition, there is an optimal magnetic field angle of 90° at which the stable and maximum heat and mass transfer rates is obtained. Moreover, the correlations of the average Nusselt and Sherwood number are also fitted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A :

Two-dimensional cavity aspect ratio

C :

Mass concentration (%)

C p :

Specific heat at constant pressure (J kg−1 K−1)

D :

Mass diffusivity (m2 s)

f i(x, t):

Velocity distribution function

g :

Gravity (m s−2)

g i(x, t):

Temperature distribution function

H :

Height of cavity (m)

Ha:

Hartmann number

He:

Dimensionless heat generation parameter

h i(x, t):

Concentration distribution function

Kr:

Thermal conductivity ratio

L :

Width of cavity (m)

Le:

Lewis number = Le = α/D

L x :

The partition location

L f :

The partition length

N :

Buoyancy ratio

Nu:

Nusselt number

p :

Pressure (N m−2)

P :

Dimensionless pressure

Pr:

Prandtl number = Pr = ν/α

Q :

Heat generation parameter

RaS :

Solutal Rayleigh number = ΔTL32

Ra:

Thermal Rayleigh number = ΔTL3α

S :

Dimensionless concentration

Sh:

Local Sherwood number

T :

Local temperature (K)

u :

X direction velocity of fluid (m s−1)

v :

Y direction velocity of fluid (m s−1)

U :

Dimensionless velocity in X direction

V :

Dimensionless velocity in Y direction

x, y :

Dimensional coordinates (m)

X, Y :

Dimensionless coordinates

W :

The partition thickness

α :

Thermal diffusivity coefficient (m2 s)

β T :

Coefficient of thermal expansion (K−1)

β C :

Coefficient of mass expansion (m3 kg−1)

θ :

Dimensionless temperature

μ :

Dynamic viscosity (kg m−1 s−1)

ν :

Kinematic viscosity (m2 s−1)

ρ :

Density (kg m−3)

av:

Average

c:

Cold

h:

Hot

ϕ:

Magnetic field angle

References

  1. Sarris IE, Kakarantzas SC, Grecos AP, et al. MHD natural convection in a laterally and volumetrically heated square cavity. Int J Heat Mass Transf. 2005;48:3443–53.

    Article  Google Scholar 

  2. Sarris IE, Zikos GK, Grecos AP, et al. On the limits of validity of the low magnetic Reynolds number approximation in MHD natural-convection heat transfer. Numer Heat Transf B Fund. 2006;50:157–80.

    Article  CAS  Google Scholar 

  3. Ozoe H, Okada K. The effect of the direction of the external magnetic field on the three-dimensional natural convection in a cubical enclosure. Int J Heat Mass Transf. 1989;32(10):1939–54.

    Article  CAS  Google Scholar 

  4. Lee JR, Ha MY. A numerical study of natural convection in a horizontal enclosure with a conducting body. Int J Heat Mass Transf. 2005;48:3308–18.

    Article  Google Scholar 

  5. Bilgen E, Oztop H. Natural convection heat transfer in partially open inclined square cavities. Int J Heat Mass Transf. 2005;48:1470–9.

    Article  Google Scholar 

  6. Rahman M, Oztop H, Saidur R, et al. Finite element solution of MHD mixed convection in a channel with a fully or partially heated cavity. Comput Fluids. 2013;79:53–64.

    Article  Google Scholar 

  7. Ece MC, Elif B. Natural-convection flow under a magnetic field in an inclined rectangular enclosure heated and cooled on adjacent walls. Fluid Dyn Res. 2006;38:564–90.

    Article  Google Scholar 

  8. Sivasankaran S, Ho CJ. Effect of temperature dependent properties on natural convection of water near its density maximum in enclosures. Numer Heat Transf A Appl. 2007;53:507–23.

    Article  CAS  Google Scholar 

  9. Sathiyamoorthy M, Chamkha A. Effect of magnetic field on natural convection flow in a liquid gallium filled square cavity for linearly heated side wall. Int J Therm Sci. 2010;49:1856–65.

    Article  CAS  Google Scholar 

  10. Sivaraj C, Sheremet MAMHD. natural convection in an inclined square porous cavity with a heat conducting solid block. J Magn Magn Mater. 2017;426:351–60.

    Article  CAS  Google Scholar 

  11. Chamkha AJ, Al-Naser H. Hydromagnetic double-diffusive convection in a rectangular enclosure with opposing temperature and concentration gradients. Int J Heat Mass Transf. 2002;45:2465–83.

    Article  CAS  Google Scholar 

  12. Chamkha AJ, Al-Naser H. Hydromagnetic double-diffusive convection in a rectangular enclosure with uniform side heat and mass fluxes and opposing temperature and concentration gradients. Int J Heat Mass Transf. 2002;41:936–48.

    CAS  Google Scholar 

  13. Maatki C, Kolsi L, Oztop HF, et al. Effects of magnetic field on 3D double diffusive convection in a cubic cavity filled with a binary mixture. Int Commu Heat Mass Transf. 2013;49:86–95.

    Article  Google Scholar 

  14. Maatki C, Ghachem K, Kolsi L. Inclination effects of magnetic field direction in 3D double-diffusive natural convection. Appl Math Comput. 2016;273:178–89.

    Google Scholar 

  15. Rahman M, Saidur R, Rahim NA. Conjugated effect of joule heating and magneto-hydrodynamic on double-diffusive mixed convection in a horizontal channel with an open cavity. Int J Heat Mass Transf. 2011;54:3201–13.

    Article  Google Scholar 

  16. Nikbakhti R, Khodakhah J. Numerical study of double diffusive buoyancy forces induced natural convection in a trapezoidal enclosure partially heated from the right sidewall. Eng Sci Technol Int J. 2016;19:322–37.

    Google Scholar 

  17. Astanina MS, Sheremet MA, Oztop HF, Abu-Hamdeh N. MHD natural convection and entropy generation of ferrofluid in an open trapezoidal cavity partially filled with a porous medium. Int J Mech Sci. 2018;136:493–502.

    Article  Google Scholar 

  18. Hussain S, Öztop HF, et al. Double diffusive nanofluid flow in a duct with cavity heated from below. Int J Mech Sci. 2017;131:535–45.

    Article  Google Scholar 

  19. Grosan T, Revnic C, Pop I. Magnetic field and internal heat generation effects on the free convection in a rectangular cavity filled with a porous medium. Int J Heat Mass Transf. 2009;52:1525–33.

    Article  CAS  Google Scholar 

  20. Borjini MN, Aissia HB, Halouani K. Effect of optical properties on oscillatory hydromagnetic double-diffusive convection within semitransparent fluid. Int J Heat Mass Transf. 2006;49:3984–96.

    Article  Google Scholar 

  21. Teamah MA. Numerical simulation of double diffusive natural convection in rectangular enclosure in the presences of magnetic field and heat source. Int J Therm Sci. 2008;47:237–48.

    Article  Google Scholar 

  22. Teamah MA, Elsafty AF, Massoud EZ. Numerical simulation of double-diffusive natural convective flow in an inclined rectangular enclosure in the presence of magnetic field and heat source. Int J Therm Sci. 2012;52:161–75.

    Article  Google Scholar 

  23. Mondal S, Sibanda P. Unsteady double diffusive convection in an inclined rectangular lid-driven enclosure with different magnetic field angles and non-uniform boundary conditions. Int J Heat Mass Transf. 2015;90:900–10.

    Article  Google Scholar 

  24. Qin Q, Xia ZA, Tian ZF. High accuracy numerical investigation of double-diffusive convection in a rectangular enclosure with horizontal temperature and concentration gradients. Int J Heat Mass Transf. 2014;71:405–23.

    Article  Google Scholar 

  25. Tian ZF, Liang X, Yu PX. A higher order compact finite difference algorithm for solving the incompressible Navier–Stokes equations. Int J Numer Methods Eng. 2011;88:511–32.

    Article  Google Scholar 

  26. Yu PX, Xiao Z, Wu S. High accuracy numerical investigation of double-diffusive convection in a rectangular cavity under a uniform horizontal magnetic field and heat source. Int J Heat Mass Transf. 2017;110:613–28.

    Article  CAS  Google Scholar 

  27. Sheremet MA. Combined natural convection heat and mass transfer in an enclosure having finite thickness walls. Meccanica. 2013;48:851–62.

    Article  Google Scholar 

  28. Keyhani Asl A, Hossainpour S, Rashidi MM, Sheremet MA, Yang Z. Comprehensive investigation of solid and porous fins influence on natural convection in an inclined rectangular enclosure. Int J Heat Mass Transf. 2019;133:729–44.

    Article  Google Scholar 

  29. Rashidi S, Bovand M, Esfahani JA. Optimization of partitioning inside a single slope solar still for performance improvement. Desalination. 2016;395:79–91.

    Article  CAS  Google Scholar 

  30. Rashidi S, Esfahani JA. Spatial entropy generation analysis for the design improvement of a single slope solar still. Environ Prog Sustain. 2018;37:1112–20.

    Article  CAS  Google Scholar 

  31. Gao D, Chen Z, Chen L. A thermal lattice Boltzmann model for natural convection in porous media under local thermal non-equilibrium conditions. Int J Heat Mass Transf. 2014;70:979–89.

    Article  Google Scholar 

  32. Chen S, Gong W, Yan Y. Conjugate natural convection heat transfer in an open-ended square cavity partially filled with porous media. Int J Heat Mass Transf. 2018;124:368–80.

    Article  Google Scholar 

  33. Asadollahi A, Rashidi S, Mohamad AA. Removal of the liquid from a micro-object and controlling the surface wettability by using a rotating shell—numerical simulation by lattice Boltzmann method. J Mol Liq. 2018;272:645–55.

    Article  CAS  Google Scholar 

  34. Kazemian Y, Rashidi S, Esfahani JA, Karimi N. Simulation of conjugate radiation-forced convection heat transfer in a porous medium using the lattice Boltzmann method. Meccanica. 2019;54:505–24.

    Article  Google Scholar 

  35. He B, Lu S, Gao D, Chen W, Li X. Lattice Boltzmann simulation of double diffusive natural convection of nanofluids in an enclosure with heat conducting partitions and sinusoidal boundary conditions. Int J Mech Sci. 2019;161–162:105003.

    Article  Google Scholar 

  36. Kefayati GHR. Simulation of double diffusive MHD (magnetohydrodynamic) natural convection and entropy generation in an open cavity filled with power-law fluids in the presence of Soret and Dufour effects (part I: study of fluid flow, heat and mass transfer). Energy. 2016;107:889–916.

    Article  Google Scholar 

  37. Sheikholeslami M, Hayat T, Alsaed A. MHD free convection of Al2O3-water nanofluid considering thermal radiation: a numerical study. Int J Heat Mass Transf. 2016;96:513–24.

    Article  CAS  Google Scholar 

  38. Zhang T, Che D. Double MRT thermal lattice Boltzmann simulation for MHD natural convection of nanofluids in an inclined cavity with four square heat sources. Int J Heat Mass Transf. 2016;94:87–100.

    Article  CAS  Google Scholar 

  39. Sajjadi H, Amiri DA, Atashafrooz M. Double MRT lattice Boltzmann simulation of 3-D MHD natural convection in a cubic cavity with sinusoidal temperature distribution utilizing nanofluid. Int J Heat Mass Transf. 2018;126:489–503.

    Article  CAS  Google Scholar 

  40. Ma C. Lattice BGK simulations of double diffusive natural convection in a rectangular enclosure in the presences of magnetic field and heat source. Nonlinear Anal Real. 2009;10:2666–78.

    Article  Google Scholar 

  41. Sathiyamoorthi A, Anbalagan S. Mesoscopic analysis of Heatline and Massline during double-diffusive MHD natural convection in an inclined cavity. Chin J Phys. 2018;56:2155–72.

    Article  CAS  Google Scholar 

  42. Sathiyamoorthi A, Anbalagan S. Mesoscopic analysis of MHD double diffusive natural convection and entropy generation in an enclosure filled with liquid metal. J Taiwan Inst Chem E. 2019;95:155–73.

    Article  CAS  Google Scholar 

  43. Ma Y, Mohebbi R, Rashidi MM, Manca O, Yang Z. Numerical investigation of MHD effects on nanofluid heat transfer in a baffled U-shaped enclosure using lattice Boltzmann method. J Therm Anal Calorim. 2019;135:3197–213.

    Article  CAS  Google Scholar 

  44. Ferhi M, Djebali R, Abboudi S, Kharroubi H. Conjugate natural heat transfer scrutiny in differentially heated cavity partitioned with a conducting solid using the lattice Boltzmann method. J Therm Anal Calorim. 2019;138:3065–88.

    Article  CAS  Google Scholar 

  45. Bejan A. Mass and heat transfer by natural convection in a vertical cavity. Int J Heat Fluid Flow. 1985;6:149–59.

    Article  CAS  Google Scholar 

  46. Trevisan OV, Bejan A. Combined heat and mass transfer by natural convection in a vertical enclosure. ASME J Heat Transf. 1987;109:104–12.

    Article  CAS  Google Scholar 

  47. Guo ZL, Shi BC, Wang NC. Lattice BGK model for incompressible Navier–Stokes equation. J Comput Phys. 2000;165:288–306.

    Article  Google Scholar 

  48. Guo ZL, Zheng CG, Shi BC. Non-equilibrium extrapolation method for velocity and boundary conditions in the lattice Boltzmann method. Chin Phys. 2002;11(4):366–74.

    Article  Google Scholar 

  49. Yu PX, Qiu JX, Qin Q, Tian ZF. Numerical investigation of natural convection in a rectangular cavity under different directions of uniform magnetic field. Int J Heat Mass Transf. 2013;67:1131–44.

    Article  Google Scholar 

  50. Gangawane KM. Effect of angle of applied magnetic field on natural convection in an open ended cavity with partially active walls. Chem Eng Res Des. 2017;12(7):22–34.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Jiangsu Province (No. BK20180732), China Postdoctoral Science Foundation (No. 2018M632332), and the Natural Science Research of Colleges and Universities of Jiangsu Province (No. 18KJB470017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boyu He.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, S., He, B., Gao, D. et al. Numerical simulation of double-diffusive natural convection in an enclosure in the presence of magnetic field with heat-conducting partition using lattice Boltzmann method. J Therm Anal Calorim 146, 699–716 (2021). https://doi.org/10.1007/s10973-020-10044-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10044-y

Keywords

Navigation