Skip to main content
Log in

Random stick-slip oscillations in a multiphysics system

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This work analyzes the stochastic response of a multiphysics system with stick-slip oscillations. The system is composed of two interacting subsystems, a mechanical with Coulomb friction and an electromagnetic (a DC motor). An imposed source voltage in the DC motor stochastically excites the system. This excitation, combined with the dry-friction, induces in the mechanical subsystem stochastic stick-slip oscillations. The resulting motion of the mechanical subsystem can be characterized by a random sequence of two qualitatively different and alternate modes, the stick- and slip-modes, with a non-smooth transition between them. The duration of each stick-mode is uncertain and depends on electromagnetic and mechanical parameters and variables, specially the position of the mechanical subsystem during the stick-mode. Duration and position are dependent random variables and must be jointly analyzed. The objective of this paper is to characterize and quantify this stochastic dependence, a novelty in the literature. The high amount of data required to perform the analysis and to construct joint histograms puts the problem into the class of big data problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L. Anh, Dynamics of mechanical systems with Coulomb friction, vol. 1 (Springer, Berlin, 2002)

    Google Scholar 

  2. Q. Cao, A. Léger, A Smooth and Discontinuous Oscillator: Theory, Methodology and Applications, in Springer Tracts in Mechanical Engineering, vol. 1. (Springer, Berlin, 2017)

  3. P. Glendinning, M. Jeffrey, An introduction to piecewise smooth dynamics, vol. 1 (Birkhäuser, Switzerland, 2019)

    Book  Google Scholar 

  4. M. Jeffrey, Hidden dynamics: the mathematics of switches, decisions and other discontinuous behaviour, vol. 1 (Springer, Switzerland, 2018)

    Book  Google Scholar 

  5. R. Lima, R. Sampaio, Stick-mode duration of a dry-friction oscillator with an uncertain model. J. Sound Vib. 353, 259–271 (2015)

    Article  ADS  Google Scholar 

  6. J. Awrejcewicz, P. Olejnik, Stick-slip dynamics of a two-degree-of-freedom system. Int. J. Bifurc. Chaos 13(4), 843–861 (2003)

    Article  MathSciNet  Google Scholar 

  7. U. Galvanetto, S. Bishop, Dynamics of a simple damped oscillator under going stick-slip vibrations. Mechanica 34, 337–347 (1999)

    Article  Google Scholar 

  8. R. Leine, D. Van Campen, A. Kraker, L. Van den Steen, Stick-slip vibrations induced by alternate friction models. Nonlinear Dyn. 16(1), 45–54 (2019)

    MATH  Google Scholar 

  9. A. Luo, B. Gegg, Stick and non-stick periodic motions in periodically forced oscillators with dry friction. J. Sound Vib. 291(1–2), 132–168 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  10. P. Olejnik, J. Awrejcewicz, Application of Hénon method in numerical estimation of the stick-slip transitions existing in Filippov-type discontinuous dynamical systems with dry friction. Nonlinear Dyn. 73(1), 723–736 (2013)

    Article  Google Scholar 

  11. M. Jeffrey, Modeling with nonsmooth dynamics, in Frontiers in Applied Dynamical Systems: Reviews and Tutorials, vol. 7. (Springer, Switzerland, 2020)

  12. M. Bengisu, A. Akay, Stick-slip oscillations: dynamics of friction and surface roughness. J. Acoust. Soc. Am. 105(1), 194–205 (1999)

    Article  ADS  Google Scholar 

  13. Y. Braiman, F. Family, H. Hentschel, Nonlinear friction in the periodic stick-slip motion of coupled oscillators. Phys. Rev. B 55(8), 5491–5504 (1997)

    Article  ADS  Google Scholar 

  14. M. Jeffrey, The ghosts of departed quantities in switches and transitions. SIAM Rev. 60(1), 116–136 (2017)

    Article  MathSciNet  Google Scholar 

  15. A. Léger, E. Pratt, Qualitative Analysis of Nonsmooth Dynamics: A Simple Discrete System with Unilateral Contact and Coulomb Friction (Elsevier, ISTE Press, Great Britain, 2016)

  16. E. Berger, Friction modeling for dynamic system simulation. Appl. Mech. Rev. 55(6), 535–577 (2002)

    Article  ADS  Google Scholar 

  17. A. Fidlin, Nonlinear Oscillations in Mechanical Engineering (Springer, EUA, 2006)

    Google Scholar 

  18. B. Vande Vandre, D. Van Campen, A. De Kraker, An approximate analysis of dry-friction-induced stick-slip vibrations by a smoothing procedure. Nonlinear Dyn. 19, 157–169 (1999)

    MATH  Google Scholar 

  19. J. Awrejcewicz, M. Fečkan, P. Olejnik, On continuous approximation of discontinuous systems. Nonlinear Anal. 62(7), 1317–1331 (2005)

  20. J. Awrejcewicz, P. Olejnik, Friction pair modeling by a 2-DOF system: numerical and experimental investigations. Int. J. Bifurc. Chaos 15(6), 1931–1944 (2005)

    Article  Google Scholar 

  21. J. Awrejcewicz, L. Dzyubak, C. Grebogi, Estimation of chaotic and regular (stick-slip and slip-slip) oscillations exhibited by coupled oscillators with dry friction. Nonlinear Dyn. 42(2), 383–394 (2005)

    Article  MathSciNet  Google Scholar 

  22. J. Awrejcewicz, Y. Pyryev, Chaos prediction in the duffing type system with friction using Melnikov’s functions. Nonlinear Anal.: Real World Appl. 7(1), 12–24 (2006)

  23. J. Awrejcewicz, Y. Pyryev, Occurrence of stick-slip phenomenon. J. Theor. Appl. Mech. 45(1), 33–40 (2007)

    Google Scholar 

  24. A. Barakat, R. Lima, R. Sampaio, P. Hagedorn, Bimodal parametric excitation of a micro-ring gyroscope. Proc. Appl. Math. Mech. 20(1), e202000153 (2021)

  25. J.-F. Deü, W. Larbi, R. Ohayon, R. Sampaio, Piezoelectric shunt vibration damping of structural-acoustic systems: finite element formulation and reduced-order model. J. Vib. Acoust. 136(3), 031007 (2014)

    Article  Google Scholar 

  26. W. Larbi, Numerical modeling of sound and vibration reduction using viscoelastic materials and shunted piezoelectric patches. Comput. Struct. 232, 105822 (2020)

    Article  Google Scholar 

  27. R. Lima, C. Soize, R. Sampaio, Robust design optimization with an uncertain model of a nonlinear vibro-impact electro-mechanical system. Commun. Nonlinear Sci. Numer. Simul. 23, 263–273 (2015)

    Article  ADS  Google Scholar 

  28. R. Lima, R. Sampaio, Two parametric excited nonlinear systems due to electromechanical coupling. J. Braz. Soc. Mech. Sci. Eng. 38, 931–943 (2016)

    Article  Google Scholar 

  29. R. Lima, R. Sampaio, P. Hagedorn, J.-F. Deü, Comments on the paper ’On nonlinear dynamics behavior of an electro-mechanical pendulum excited by a nonideal motor and a chaos control taking into account parametric errors’ published in this Journal. J. Braz. Soc. Mech. Sci. Eng. 41, 552 (2019)

  30. W. Manhães, R. Sampaio, R. Lima, P. Hagedorn, Two coupling mechanisms compared by their Lagrangians, in: Proceeding of the XVIII International Symposium on Dynamic Problems of Mechanics (DINAME 2019), Búzios, Brazil (2019), pp. 1–4

  31. W. Manhães, R. Sampaio, R. Lima, P. Hagedorn, J.-F. Deü, Lagrangians for electromechanical systems. Mec. Comput. XXXVI 42, 1911–1934 (2018)

    Google Scholar 

  32. R. Lima, R. Sampaio, Electromechanical system with a stochastic friction field. Mec. Comput. XXXVII 18, 667–677 (2019)

    Google Scholar 

  33. A. Wijata, K. Polczyński, J. Awrejcewicz, Theoretical and numerical analysis of regular one-side oscillations in a single pendulum system driven by a magnetic field. Mech. Syst. Signal Process. 150, 107229 (2021)

    Article  Google Scholar 

  34. K. Polczyński, S. Skurativskyi, M. Bednarek, J. Awrejcewicz, Nonlinear oscillations of coupled pendulums subjected to an external magnetic stimulus. Mech. Syst. Signal Process. 154, 107560 (2021)

    Article  Google Scholar 

  35. R. Lima, R. Sampaio, Stick-slip oscillations in a multiphysics system. Nonlinear Dyn. 100, 2215–2224 (2020)

    Article  Google Scholar 

  36. R. Lima, R. Sampaio, Stick-slip oscillations in a stochastic multiphysics system, in: Proceedings of the 5th International Symposium on Uncertainty Quantification and Stochastic Modeling (Uncertainties 2020), Rouen, France, pp. 3–17 (2020)

  37. R. Lima, R. Sampaio, Construction of a statistical model for the dynamics of a base-driven stick-slip oscillator. Mech. Syst. Signal Process. 91, 157–166 (2017)

    Article  ADS  Google Scholar 

  38. R. Lima, R. Sampaio, Parametric analysis of the statistical model of the stick-slip process. J. Sound Vib. 397, 141–151 (2017)

    Article  ADS  Google Scholar 

  39. T. Hlalele, S. Du, Analysis of power transmission line uncertainties: status review. J. Electr. Electr. Syst. 5(3), 1–5 (2016)

    Google Scholar 

  40. G. Sivanagaraju, S. Chakrabarti, S. Srivastava, Uncertainty in transmission line parameters: estimation and impact on line current differential protection. IEEE Trans. Instrum. Meas. 63(6), 1496–1504 (2014)

    Article  Google Scholar 

  41. R. Lima, R. Sampaio, What is uncertainty quantification? J. Braz. Soc. Mech. Sci. Eng. 40, 155 (2018)

    Article  Google Scholar 

  42. R. Lima, R. Sampaio, Uncertainty quantification and cumulative distribution function: how are they related?, Bayesian Inference and Maximum Entropy Methods in Science and Engineering.Springer Proceedings in Mathematics & Statistics (2017), (253–260)

  43. M. Márquez, I. Boussaada, H. Mounier, S.-I. Niculescu, Analysis and control of oilwell drilling vibrations: a time-delay systems approach, in Advances in Industrial Control (Springer, Switzerland, 2015)

  44. D. Sivia, J. Skilling, Data Analysis: A Bayesian Tutorial, 2nd edn. (Oxford University Press, New York, 2006)

    MATH  Google Scholar 

  45. M. Cartmell, Introduction to Linear, Parametric and Nonlinear Vibrations, vol. 260 (Springer, 1990)

  46. M. Dantas, R. Sampaio, R. Lima, Asymptotically stable periodic orbits of a coupled electromechanical system. Nonlinear Dyn. 78, 29–35 (2014)

    Article  Google Scholar 

  47. M. Dantas, R. Sampaio, R. Lima, Existence and asymptotic stability of periodic orbits for a class of electromechanical systems: a perturbation theory approach. Z. Angew. Math. Phys. 67, 2 (2016)

    Article  MathSciNet  Google Scholar 

  48. M. Dantas, R. Sampaio, R. Lima, Phase bifurcations in an electromechanical system. IUTAM Procedia 1(19), 193–200 (2016)

    Article  Google Scholar 

  49. E. Souza de Cursi, R. Sampaio, Uncertainty Quantification and Stochastic Modeling with Matlab (Elsevier, ISTE Press, 2015)

  50. R. Lima, R. Sampaio, Modelagem Estocástica e Geração de Amostras de Variáveis e Vetores Aleatórios, Vol. 70 of Notas de Matemática Aplicada, SBMAC (2012), http://www.sbmac.org.br/arquivos/notas/livro_70.pdf

Download references

Acknowledgements

The authors acknowledge the support given by FAPERJ, CNPq and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Lima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, R., Sampaio, R. Random stick-slip oscillations in a multiphysics system. Eur. Phys. J. Plus 136, 879 (2021). https://doi.org/10.1140/epjp/s13360-021-01860-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01860-8

Navigation