Skip to main content
Log in

Stick–slip oscillations in a multiphysics system

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This work analyzes a multiphysics system with stick–slip oscillations. The system is composed of two subsystems that interact, a mechanical and an electromagnetic (a DC motor). The mechanical subsystem is subject to a dry frictional force modeled as a Coulomb friction. The resulting motion of the mechanical subsystem can be characterized by two qualitatively different and alternate modes, the stick and slip modes, with a nonsmooth transition between them. The stick–slip oscillations affect and are affected by the electromechanical coupling. To the best of our knowledge, the study of stick–slip oscillations of this kind of system is a novelty in the literature since no references dealing with it were found after an extensive literature review. An analytical approximation of the upper bound for the stick duration is proposed. It should be remarked that the stick duration is one of the variables of great interest in systems with stick–slip dynamics. One the advantages of having the analytical approximation we propose is that it allows the observation of the influence of mechanical and electromagnetic variables and parameters on the stick duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anh, L.: Dynamics of Mechanical Systems with Coulomb Friction, vol. 1. Springer, Berlin (2002)

    Google Scholar 

  2. Awrejcewicz, J., Olejnik, P.: Occurrence of stick-slip phenomenon. J. Theor. Appl. Mech. 175(1), 33–40 (2007)

    Google Scholar 

  3. Berger, E.: Friction modeling for dynamic system simulation. Appl. Mech. Rev. 52(6), 535–577 (2002)

    Google Scholar 

  4. Cao, Q., Léger, A.: A Smooth and Discontinuous Oscillator: Theory, Methodology and Applications, vol. 1. Springer, Berlin (2017)

    MATH  Google Scholar 

  5. Cartmell, M.: Introduction to Linear, Parametric and Nonlinear Vibrations, vol. 260. Springer, Berlin (1990)

    MATH  Google Scholar 

  6. Dantas, M., Sampaio, R., Lima, R.: Asymptotically stable periodic orbits of a coupled electromechanical system. Nonlinear Dyn. 78, 29–35 (2014)

    MATH  Google Scholar 

  7. Dantas, M., Sampaio, R., Lima, R.: Existence and asymptotic stability of periodic orbits for a class of electromechanical systems: a perturbation theory approach. Z. Angew. Math. Phys. 67, 2 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Dantas, M., Sampaio, R., Lima, R.: Phase bifurcations in an electromechanical system. IUTAM Procedia 1(19), 193–200 (2016)

    Google Scholar 

  9. Ding, W.: Self-excited Vibration: Theory, Paradigms, and Research Method. Springer, EUA, Berlin (2012)

    Google Scholar 

  10. Feng, Q.: A discrete model of a stochastic friction system. Comput. Methods Appl. Mech. Eng. 192, 2339–2354 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Fidlin, A.: Nonlinear Oscillations in Mechanical Engineering. Springer, EUA, Berlin (2006)

    Google Scholar 

  12. Galvanetto, U., Bishop, S.: Dynamics of a simple damped oscillator under going stick-slip vibrations. Meccanica 34, 337–347 (1999)

    MathSciNet  MATH  Google Scholar 

  13. Glendinning, P., Jeffrey, M.: An Introduction to Piecewise Smooth Dynamics, vol. 1. Birkhäuser, Basel (2019)

    MATH  Google Scholar 

  14. Hetzler, H.: On the effect of nonsmooth Coulomb friction on hopf bifurcations in a 1-dof oscillator with self-excitation due to negative damping. Nonlinear Dyn. 69(1–2), 601–614 (2012)

    MathSciNet  Google Scholar 

  15. Hinrichs, N., Oestreich, M., Popp, K.: On the modelling of friction oscillators. J. Sound Vib. 216(3), 435–459 (1998)

    Google Scholar 

  16. Hundal, M.: Response of a base excited system with coulomb and viscous friction. J. Sound Vib. 64, 371–378 (1979)

    MATH  Google Scholar 

  17. Jeffrey, M.: Hidden Dynamics: The Mathematics of Switches, Decisions and Other Discontinuous Behaviour, vol. 1. Springer, Basel (2018)

    MATH  Google Scholar 

  18. Jordan, D., Smith, P.: Nonlinear Ordinary Differential Equations, vol. 560. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  19. Kang, J., Krousgrill, C., Sadeghi, F.: Oscillation pattern of stick-slip vibrations. Int. J. Non Linear Mech. 44, 820–828 (2009)

    Google Scholar 

  20. Karnopp, D., Margolis, D., Rosenberg, R.: System Dynamics: Modeling and Simulation of Mechatronic Systems, 4th edn. Wiley, New-York (2006)

    Google Scholar 

  21. Larbi, W.: Numerical modeling of sound and vibration reduction using viscoelastic materials and shunted piezoelectric patches. Comput. Struct. 232 (2017). https://doi.org/10.1016/j.compstruc.2017.07.024

    Google Scholar 

  22. Larbi, W., Deü, J.F.: Reduced order finite element formulations for vibration reduction using piezoelectric shunt damping. Appl. Acoust. 147, 111–120 (2019)

    Google Scholar 

  23. Larbi, W., Deü, J.F., Ohayon, R.: Finite element formulation of smart piezoelectric composite plates coupled with acoustic fluid. Compos. Struct. 94, 501–509 (2012)

    Google Scholar 

  24. Leine, R., van Campen, D., de Kraker, A., van den Steen, L.: Stick-slip vibrations induced by alternate friction models. Nonlinear Dyn. 16(1), 45–54 (2019)

    MATH  Google Scholar 

  25. Li, Z., Ouyang, H., Guan, Z.: Friction-induced vibration of an elastic disc and a moving slider with separation and reattachment. Nonlinear Dyn. 87, 1045–1067 (2017)

    Google Scholar 

  26. Lima, R., Sampaio, R.: Stick-mode duration of a dry-friction oscillator with an uncertain model. J. Sound Vib. 353, 259–271 (2015)

    Google Scholar 

  27. Lima, R., Sampaio, R.: Two parametric excited nonlinear systems due to electromechanical coupling. J. Br. Soc. Mech. Sci. Eng. 38, 931–943 (2016)

    Google Scholar 

  28. Lima, R., Sampaio, R.: Construction of a statistical model for the dynamics of a base-driven stick-slip oscillator. Mech. Syst. Signal Process. 91, 157–166 (2017)

    Google Scholar 

  29. Lima, R., Sampaio, R.: Parametric analysis of the statistical model of the stick-slip process. J. Sound Vib. 397, 141–151 (2017)

    Google Scholar 

  30. Lima, R., Sampaio, R.: Dynamics of a system with dry-friction and electromechanical coupling,. In: Proceeding of the 25th International Congress of Mechanical Engineering (COBEM 2019). Uberlândia, Brazil (2019)

  31. Lima, R., Sampaio, R.: Electromechanical system with a stochastic friction field. Mec. Comput. 37(18), 667–677 (2019)

    Google Scholar 

  32. Lima, R., Sampaio, R.: Nonlinear dynamics of a coupled system with dry-friction. In: Proceeding Series of the Brazilian Society of Computational and Applied Mathematics (CNMAC 2019). Uberlândia, Brazil (2019)

  33. Lima, R., Sampaio, R.: Stick-slip oscillations or couple-decouple oscillations? In: Proceeding of the XVIII International Symposium on Dynamic Problems of Mechanics (DINAME 2019). Búzios, Brazil (2019)

  34. Lima, R., Sampaio, R., Hagedorn, P.: One alone makes no coupling. Mec. Comput. 36(20), 931–944 (2018)

    Google Scholar 

  35. Lima, R., Sampaio, R., Hagedorn, P., Deü, J.: Comments on the paper ‘on nonlinear dynamics behavior of an electro-mechanical pendulum excited by a nonideal motor and a chaos control taking into account parametric errors’ published in this journal. J. Br. Soc. Mech. Sci. Eng. 41, 552 (2019)

    Google Scholar 

  36. Luo, A., Gegg, B.: Stick and non-stick periodic motions in periodically forced oscillators with dry friction. J. Sound Vib. 291(1–2), 132–168 (2006)

    MathSciNet  MATH  Google Scholar 

  37. Manhães, W., Sampaio, R., Lima, R., Hagedorn, P.: Two coupling mechanisms compared by their lagrangians. In: Proceeding of the XVIII International Symposium on Dynamic Problems of Mechanics (DINAME 2019). Búzios, Brazil (2019)

  38. Manhães, W., Sampaio, R., Lima, R., Hagedorn, P., Deü, J.F.: Lagrangians for electromechanical systems. Mec. Comput. 36(42), 1911–1934 (2018)

    Google Scholar 

  39. Navarro-Lópes, E.M., Suárez, R.: Practical approach to modelling and controlling stick-slip oscillations in oilwell drillstrings. In: IEEE (ed.) Proceedings of the 2004 IEEE, International Conference on Control Applications, pp. 1454–1460. IEEE (2004)

  40. Oestreich, M., Hinrichs, N., Popp, K.: Bifurcation and stability analysis for a non-smooth friction oscillator. Arch. Appl. Mech. 66(5), 301–314 (1996)

    MATH  Google Scholar 

  41. Olejnik, P., Awrejcewicz, J.: Application of hénon method in numerical estimation of the stick-slip transitions existing in filippov-type discontinuous dynamical systems with dry friction. Nonlinear Dyn. 73(1), 723–736 (2013)

    Google Scholar 

  42. Ouyang, H., Mottershead, J., Cartmell, M., Brookfield, D.: Friction-induced vibration of an elastic slideron a vibrating disc. Int. J. Mech. Sci. 41(1), 325–336 (1999)

    MATH  Google Scholar 

  43. Shaw, S.: On the dynamic response of a system with dry-friction. J. Sound Vib. 108, 305–325 (1986)

    MathSciNet  MATH  Google Scholar 

  44. Thomsen, J., Fidlin, A.: Analytical approximations for stick-slip vibration amplitudes. Int. J. Non Linear Mech. 38, 389–403 (2003)

    MATH  Google Scholar 

  45. Vande Vandre, B., Van Campen, D., De Kraker, A.: An approximate analysis of dry-friction-induced stick-slip vibrations by a smoothing procedure. Nonlinear Dyn. 19, 157–169 (1999)

    MATH  Google Scholar 

  46. Viguié, R., Kerschen, G., Golinval, J.C., McFarland, D., Bergman, L., Vakakis, A., van de Wouw, N.: Using passive nonlinear targeted energy transfer to stabilize drill-string systems. Mech. Syst. Signal Process. 23(1), 148–169 (2009)

    Google Scholar 

  47. Vrande, D.B.V., Campen, D.V., Kraker, A.: An approximate analysis of dry-friction-induced stick-slip vibrations by a smoothing procedure. Nonlinear Dyn. 19(2), 159–171 (1999)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support given by FAPERJ, CNPq and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Lima.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, R., Sampaio, R. Stick–slip oscillations in a multiphysics system. Nonlinear Dyn 100, 2215–2224 (2020). https://doi.org/10.1007/s11071-020-05677-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05677-5

Keywords

Navigation