Skip to main content

Advertisement

Log in

Status of direct and indirect solar desalination methods: comprehensive review

  • Review
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The majority of existing water is saline water and it is crucial to find approaches and technologies to desalinate water in an efficient and reliable manner. Solar energy can be applied in desalination systems in order to provide required heat or generate needed electricity by using PV modules. Applying solar energy instead of fossil fuels leads to more environmentally benign technologies in desalinating saline water. Due to the severe worldwide water crisis, precise comprehension of desalination methods can pave the way toward potable water achievement at reasonable cost. In this paper, a comprehensive literature review is accomplished on various types of desalination systems and applications of solar energy in these technologies. Based on the reviewed studies, solar energy is a preferable source of energy for fresh water production with lower greenhouse gases emission and high operation reliability.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas, A.M. Mayes, Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008). https://doi.org/10.1038/nature06599

    Article  ADS  Google Scholar 

  2. M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment. Science (80-) 333, 712–717 (2011). https://doi.org/10.1126/science.1200488

    Article  ADS  Google Scholar 

  3. M.H. Ahmadi, M.A. Ahmadi, M. Feidt, Performance optimization of a solar-driven multi-step irreversible Brayton cycle based on a multi-objective genetic algorithm. Oil Gas Sci. Technol. Rev. d’IFP Energies Nouv. 71, 16 (2016). https://doi.org/10.2516/ogst/2014028

    Article  Google Scholar 

  4. T.E. Amin, G. Roghayeh, R. Fatemeh, P. Fatollah, Evaluation of nanoparticle shape effect on a nanofluid based flat-plate solar collector efficiency. Energy Explor. Exploit. 33, 659–676 (2015). https://doi.org/10.1260/0144-5987.33.5.659

    Article  Google Scholar 

  5. M. Ashouri, M.H. Ahmadi, S.M. Pourkiaei, F.R. Astaraei, R. Ghasempour, T. Ming, J.H. Hemati, Exergy and exergo-economic analysis and optimization of a solar double pressure organic Rankine cycle. Therm. Sci. Eng. Prog. (2017). https://doi.org/10.1016/J.TSEP.2017.10.002

    Article  Google Scholar 

  6. H. Narei, R. Ghasempour, Y. Noorollahi, The effect of employing nanofluid on reducing the bore length of a vertical ground-source heat pump. Energy Convers. Manag. 123, 581–591 (2016). https://doi.org/10.1016/j.enconman.2016.06.079

    Article  Google Scholar 

  7. A. Naseri, M. Bidi, M.H. Ahmadi, R. Saidur, Exergy analysis of a hydrogen and water production process by a solar-driven transcritical CO2 power cycle with Stirling engine. J. Clean. Prod. 158, 165–181 (2017). https://doi.org/10.1016/J.JCLEPRO.2017.05.005

    Article  Google Scholar 

  8. Y. Noorollahi, H. Gholami Arjenaki, R. Ghasempour, Thermo-economic modeling and GIS-based spatial data analysis of ground source heat pump systems for regional shallow geothermal mapping. Renew. Sustain. Energy Rev. 72, 648–660 (2017). https://doi.org/10.1016/J.RSER.2017.01.099

    Article  Google Scholar 

  9. A. Mohammadi, A. Kasaeian, F. Pourfayaz, M.H. Ahmadi, Thermodynamic analysis of a combined gas turbine, ORC cycle and absorption refrigeration for a CCHP system. Appl. Therm. Eng. 111, 397–406 (2017). https://doi.org/10.1016/J.APPLTHERMALENG.2016.09.098

    Article  Google Scholar 

  10. A. Noroozian, A. Mohammadi, M. Bidi, M.H. Ahmadi, Energy, exergy and economic analyses of a novel system to recover waste heat and water in steam power plants. Energy Convers. Manag. 144, 351–360 (2017). https://doi.org/10.1016/J.ENCONMAN.2017.04.067

    Article  Google Scholar 

  11. H. Alizadeh, R. Ghasempour, F. Razi Astaraei, M. Alhuyi Nazari, Numerical modeling of PV cooling by using pulsating heat pipe, in 3rd Interational Conference and Exhibition on Solar Energy ICESE. (Tehran, 2016). https://doi.org/10.1088/1742-6596/655/1/012022

  12. M. Aramesh, F. Pourfayaz, A. Kasaeian, Numerical investigation of the nanofluid effects on the heat extraction process of solar ponds in the transient step. Sol. Energy 157, 869–879 (2017). https://doi.org/10.1016/J.SOLENER.2017.09.011

    Article  ADS  Google Scholar 

  13. J.A. Duffie, W.A. Beckman, Solar Engineering of Thermal Processes (Wiley, New York, 2013).

    Book  Google Scholar 

  14. M.B. Shafii, S. Arabnejad, Y. Saboohi, H. Jamshidi, Experimental investigation of pulsating heat pipes and a proposed correlation. Heat Transf. Eng. 31, 854–861 (2010). https://doi.org/10.1080/01457630903547636

    Article  ADS  Google Scholar 

  15. M. Faegh, M.B. Shafii, Experimental investigation of a solar still equipped with an external heat storage system using phase change materials and heat pipes. Desalination 409, 128–135 (2017). https://doi.org/10.1016/J.DESAL.2017.01.023

    Article  Google Scholar 

  16. H. Jafari Mosleh, S. Jahangiri Mamouri, M.B. Shafii, A. Hakim Sima, A new desalination system using a combination of heat pipe, evacuated tube and parabolic trough collector. Energy Convers. Manag. 99, 141–150 (2015). https://doi.org/10.1016/J.ENCONMAN.2015.04.028

    Article  Google Scholar 

  17. B. Thole, Ground water contamination with fluoride and potential fluoride removal technologies for east and southern Africa, in Perspectives in Water Pollution. (InTech, 2013). https://doi.org/10.5772/54985

  18. WHO, Water-Related Diseases (WHO, 2016)

  19. R.K. Sinha, Desalination & Water Purification Technologies (2010).https://doi.org/10.1016/j.nucengdes.2005.09.026

  20. International Solar Alliance [WWW Document], n.d.

  21. Narendra Modi, G20 summit (2015)

  22. F.E. Ahmed, R. Hashaikeh, N. Hilal, Solar powered desalination—technology, energy and future outlook. Desalination 453, 54–76 (2019). https://doi.org/10.1016/j.desal.2018.12.002

    Article  Google Scholar 

  23. E. Jones, M. Qadir, M.T.H. van Vliet, V. Smakhtin, S.M. Kang, The state of desalination and brine production: a global outlook. Sci. Total Environ. 657, 1343–1356 (2019). https://doi.org/10.1016/j.scitotenv.2018.12.076

    Article  ADS  Google Scholar 

  24. M. Siddique, N. Turkmen, O.M. Al-Rabghi, E. Shabana, M.H. Albeirutty, Small-scale low pressure ‘single effect distillation’ and ‘single stage flash’ solar driven barometric desalination units: a comparative analysis. Desalination 444, 53–62 (2018). https://doi.org/10.1016/j.desal.2018.06.011

    Article  Google Scholar 

  25. I. Ullah, M.G. Rasul, Recent developments in solar thermal desalination technologies: a review. Energies (2019). https://doi.org/10.3390/en12010119

    Article  Google Scholar 

  26. U. Lucia, G. Grisolia, The Gouy–Stodola theorem—from irreversibility to sustainability—the thermodynamic human development index. Sustainability 13, 3995 (2021). https://doi.org/10.3390/su13073995

    Article  Google Scholar 

  27. U. Lucia, G. Grisolia, Irreversible thermodynamics and bioeconomy: towards a human oriented sustainability. Front. Phys. 9, 154 (2021)

    Article  Google Scholar 

  28. D.D.W. Rufuss, V. Rajkumar, L. Suganthi, S. Iniyan, Studies on latent heat energy storage (LHES) materials for solar desalination application-focus on material properties, prioritization, selection and future research potential. Sol. Energy Mater. Sol. Cells 189, 149–165 (2019). https://doi.org/10.1016/j.solmat.2018.09.031

    Article  Google Scholar 

  29. H.K. Jani, K.V. Modi, A review on numerous means of enhancing heat transfer rate in solar-thermal based desalination devices. Renew. Sustain. Energy Rev. 93, 302–317 (2018). https://doi.org/10.1016/j.rser.2018.05.023

    Article  Google Scholar 

  30. S.W. Sharshir, Y.M. Ellakany, A.M. Algazzar, A.H. Elsheikh, M.R. Elkadeem, E.M.A. Edreis, A.S. Waly, R. Sathyamurthy, H. Panchal, M.S. Elashry, A mini review of techniques used to improve the tubular solar still performance for solar water desalination. Process Saf. Environ. Prot. 124, 204–212 (2019). https://doi.org/10.1016/j.psep.2019.02.020

    Article  Google Scholar 

  31. M. Shatat, M. Worall, S. Riffat, Opportunities for solar water desalination worldwide: review. Sustain. Cities Soc. 9, 67–80 (2013). https://doi.org/10.1016/J.SCS.2013.03.004

    Article  Google Scholar 

  32. D. Cohen-Tanugi, J.C. Grossman, Water desalination across nanoporous graphene. Nano Lett. 12, 3602–3608 (2012). https://doi.org/10.1021/nl3012853

    Article  ADS  Google Scholar 

  33. A. Mostafaeipour, M. Qolipour, M. Rezaei, E. Babaee-tirkolaee, Investigation of off-grid photovoltaic systems for a reverse osmosis desalination system: a case study. Desalination 454, 91–103 (2019). https://doi.org/10.1016/j.desal.2018.03.007

    Article  Google Scholar 

  34. T. Humplik, J. Lee, S.C. O’Hern, B.A. Fellman, M.A. Baig, S.F. Hassan, M.A. Atieh, F. Rahman, T. Laoui, R. Karnik, E.N. Wang, Nanostructured materials for water desalination. Nanotechnology 22, 292001 (2011). https://doi.org/10.1088/0957-4484/22/29/292001

    Article  Google Scholar 

  35. Encyclopedia of Desalination and Water Resources: Home Page [WWW Document], n.d.

  36. S. Parekh, M.M. Farid, J.R. Selman, S. Al-hallaj, Solar desalination with a humidification–dehumidification technique—a comprehensive technical review. Desalination 160, 167–186 (2004). https://doi.org/10.1016/S0011-9164(04)90007-0

    Article  Google Scholar 

  37. J. Orfi, N. Galanis, M. Laplante, Air humidification–dehumidification for a water desalination system using solar energy. Desalination 203, 471–481 (2007). https://doi.org/10.1016/J.DESAL.2006.04.022

    Article  Google Scholar 

  38. I. Houcine, M. BenAmara, A. Guizani, M. Maâlej, Pilot plant testing of a new solar desalination process by a multiple-effect-humidification technique. Desalination 196, 105–124 (2006). https://doi.org/10.1016/J.DESAL.2005.11.022

    Article  Google Scholar 

  39. G.P. Narayan, M.H. Sharqawy, E.K. Summers, J.H. Lienhard, S.M. Zubair, M.A. Antar, The potential of solar-driven humidification–dehumidification desalination for small-scale decentralized water production. Renew. Sustain. Energy Rev. 14, 1187–1201 (2010). https://doi.org/10.1016/J.RSER.2009.11.014

    Article  Google Scholar 

  40. K.M. Abd El-Aziz, K. Hamza, M. El-Morsi, A.O. Nassef, S.M. Metwalli, K. Saitou, Optimum solar humidification–dehumidification desalination for microgrids and remote area communities. J. Sol. Energy Eng. 138, 021005 (2016). https://doi.org/10.1115/1.4032477

    Article  Google Scholar 

  41. G. Wu, C. Kutlu, H. Zheng, Y. Su, D. Cui, A study on the maximum gained output ratio of single-effect solar humidification–dehumidification desalination. Sol. Energy 157, 1–9 (2017). https://doi.org/10.1016/J.SOLENER.2017.08.014

    Article  ADS  Google Scholar 

  42. G.P. Narayan, M.H. Sharqawy, J.H.V. Lienhard, S.M. Zubair, Thermodynamic analysis of humidification dehumidification desalination cycles. Desalin. Water Treat. 16, 339–353 (2010). https://doi.org/10.5004/dwt.2010.1078

    Article  Google Scholar 

  43. B.L. de Oliveira Campos, A.O. da Costa, E.F. da Costa Junior, Mathematical modeling and sensibility analysis of a solar humidification–dehumidification desalination system considering saturated air. Sol. Energy 157, 321–327 (2017). https://doi.org/10.1016/J.SOLENER.2017.08.029

    Article  ADS  Google Scholar 

  44. A. Giwa, H. Fath, S.W. Hasan, Humidification–dehumidification desalination process driven by photovoltaic thermal energy recovery (PV-HDH) for small-scale sustainable water and power production. Desalination 377, 163–171 (2016). https://doi.org/10.1016/J.DESAL.2015.09.018

    Article  Google Scholar 

  45. W. Gang, H. Zheng, H. Kang, Y. Yang, P. Cheng, Z. Chang, Experimental investigation of a multi-effect isothermal heat with tandem solar desalination system based on humidification–dehumidification processes. Desalination 378, 100–107 (2016). https://doi.org/10.1016/J.DESAL.2015.09.024

    Article  Google Scholar 

  46. G. Wu, H. Zheng, X. Ma, C. Kutlu, Y. Su, Experimental investigation of a multi-stage humidification-dehumidification desalination system heated directly by a cylindrical Fresnel lens solar concentrator. Energy Convers. Manag. 143, 241–251 (2017). https://doi.org/10.1016/J.ENCONMAN.2017.04.011

    Article  Google Scholar 

  47. M.H. Hamed, A.E. Kabeel, Z.M. Omara, S.W. Sharshir, Mathematical and experimental investigation of a solar humidification–dehumidification desalination unit. Desalination 358, 9–17 (2015). https://doi.org/10.1016/J.DESAL.2014.12.005

    Article  Google Scholar 

  48. C.H. Hodges, J.E. Groh, T.L. Thompson, Solar powered humidification cycle desalination. Report on the Puerto Penasco Pilot Desalting Plant (USA, n.d.)

  49. X. Li, G. Yuan, Z. Wang, H. Li, Z. Xu, Experimental study on a humidification and dehumidification desalination system of solar air heater with evacuated tubes. Desalination 351, 1–8 (2014). https://doi.org/10.1016/J.DESAL.2014.07.008

    Article  Google Scholar 

  50. P. Gabrielli, M. Gazzani, N. Novati, L. Sutter, R. Simonetti, L. Molinaroli, G. Manzolini, M. Mazzotti, Combined water desalination and electricity generation through a humidification–dehumidification process integrated with photovoltaic-thermal modules: design, performance analysis and techno-economic assessment. Energy Convers. Manag. X(1), 100004 (2019). https://doi.org/10.1016/j.ecmx.2019.100004

    Article  Google Scholar 

  51. H. Sharon, K.S. Reddy, A review of solar energy driven desalination technologies. Renew. Sustain. Energy Rev. 41, 1080–1118 (2015). https://doi.org/10.1016/J.RSER.2014.09.002

    Article  Google Scholar 

  52. M.T. Ali, H.E.S. Fath, P.R. Armstrong, A comprehensive techno-economical review of indirect solar desalination. Renew. Sustain. Energy Rev. 15, 4187–4199 (2011). https://doi.org/10.1016/J.RSER.2011.05.012

    Article  Google Scholar 

  53. Membrane distillation | EMIS [WWW Document] (n.d.)

  54. B.R. Bodell, Distillation of Saline Water Using Silicone Rubber Membrane (1963)

  55. T. Mohammadi, M. Akbarabadi, Separation of ethylene glycol solution by vacuum membrane distillation (VMD). Desalination 181, 35–41 (2005). https://doi.org/10.1016/J.DESAL.2005.01.012

    Article  Google Scholar 

  56. M.E. Findley, Vaporization through porous membranes. Ind. Eng. Chem. Process Des. Dev. 6, 226–230 (1967). https://doi.org/10.1021/i260022a013

    Article  Google Scholar 

  57. Y. Li, K.T.-J. S. Development, Application of Vacuum Membrane Distillation in Water Treatment (2009). ccsenet.org

  58. S. Simone, A. Figoli, A. Criscuoli, M.C. Carnevale, A. Rosselli, E. Drioli, Preparation of hollow fibre membranes from PVDF/PVP blends and their application in VMD. J. Membr. Sci. 364, 219–232 (2010). https://doi.org/10.1016/J.MEMSCI.2010.08.013

    Article  Google Scholar 

  59. Z. Ding, R. Ma, A.G. Fane, A new model for mass transfer in direct contact membrane distillation. Desalination 151, 217–227 (2003). https://doi.org/10.1016/S0011-9164(02)01014-7

    Article  Google Scholar 

  60. A. Alkhudhiri, N. Darwish, N. Hilal, Membrane distillation: a comprehensive review. Desalination 287, 2–18 (2012). https://doi.org/10.1016/J.DESAL.2011.08.027

    Article  Google Scholar 

  61. S. Adham, A. Hussain, J.M. Matar, R. Dores, A. Janson, Application of membrane distillation for desalting brines from thermal desalination plants. Desalination 314, 101–108 (2013). https://doi.org/10.1016/J.DESAL.2013.01.003

    Article  Google Scholar 

  62. C. Cabassud, D. Wirth, Membrane distillation forwater desalination: how to choose an appropriate membrane. Desalination 157, 307–314 (2003)

    Article  Google Scholar 

  63. H. Maab, L. Francis, A. Al-saadi, C. Aubry, N. Ghaffour, G. Amy, S.P. Nunes, Synthesis and fabrication of nanostructured hydrophobic polyazole membranes for low-energy water recovery. J. Membr. Sci. 423–424, 11–19 (2012). https://doi.org/10.1016/j.memsci.2012.07.009

    Article  Google Scholar 

  64. S. Al-Obaidani, E. Curcio, F. Macedonio, G. Di Profio, H. Al-Hinai, E. Drioli, Potential of membrane distillation in seawater desalination: thermal efficiency, sensitivity study and cost estimation. J. Membr. Sci. 323, 85–98 (2008). https://doi.org/10.1016/J.MEMSCI.2008.06.006

    Article  Google Scholar 

  65. G.W. Meindersma, C.M. Guijt, A.B. de Haan, Desalination and water recycling by air gap membrane distillation. Desalination 187, 291–301 (2006). https://doi.org/10.1016/J.DESAL.2005.04.088

    Article  Google Scholar 

  66. M. Bindels, N. Brand, B. Nelemans, Modeling of semibatch air gap membrane distillation. Desalination 430, 98–106 (2018). https://doi.org/10.1016/J.DESAL.2017.12.036

    Article  Google Scholar 

  67. L. Cheng, Y. Zhao, P. Li, W. Li, F. Wang, Comparative study of air gap and permeate gap membrane distillation using internal heat recovery hollow fiber membrane module. Desalination 426, 42–49 (2018). https://doi.org/10.1016/J.DESAL.2017.10.039

    Article  Google Scholar 

  68. L. Francis, N. Ghaffour, A.A. Alsaadi, G.L. Amy, Material gap membrane distillation: a new design for water vapor flux enhancement. J. Membr. Sci. 448, 240–247 (2013). https://doi.org/10.1016/J.MEMSCI.2013.08.013

    Article  Google Scholar 

  69. A.E. Khalifa, Water and air gap membrane distillation for water desalination—an experimental comparative study. Sep. Purif. Technol. 141, 276–284 (2015). https://doi.org/10.1016/J.SEPPUR.2014.12.007

    Article  Google Scholar 

  70. V.D. Alves, I.M. Coelhoso, Orange juice concentration by osmotic evaporation and membrane distillation: a comparative study. J. Food Eng. 74, 125–133 (2006). https://doi.org/10.1016/J.JFOODENG.2005.02.019

    Article  Google Scholar 

  71. V. Calabro, B.L. Jiao, E. Drioli, Theoretical and experimental study on membrane distillation in the concentration of orange juice. Ind. Eng. Chem. Res. 33, 1803–1808 (1994). https://doi.org/10.1021/ie00031a020

    Article  Google Scholar 

  72. M.P. Godino, L. Peña, C. Rincón, J.I. Mengual, Water production from brines by membrane distillation. Desalination 108, 91–97 (1997). https://doi.org/10.1016/S0011-9164(97)00013-1

    Article  Google Scholar 

  73. S. Gunko, S. Verbych, M. Bryk, N. Hilal, Concentration of apple juice using direct contact membrane distillation. Desalination 190, 117–124 (2006). https://doi.org/10.1016/J.DESAL.2005.09.001

    Article  Google Scholar 

  74. S.T. Hsu, K.T. Cheng, J.S. Chiou, Seawater desalination by direct contact membrane distillation. Desalination 143, 279–287 (2002). https://doi.org/10.1016/S0011-9164(02)00266-7

    Article  Google Scholar 

  75. M. Tomaszewska, M. Gryta, A.W. Morawski, Study on the concentration of acids by membrane distillation. J. Membr. Sci. 102, 113–122 (1995). https://doi.org/10.1016/0376-7388(94)00281-3

    Article  Google Scholar 

  76. A. Khalifa, D. Lawal, M. Antar, M. Khayet, Experimental and theoretical investigation on water desalination using air gap membrane distillation. Desalination 376, 94–108 (2015). https://doi.org/10.1016/J.DESAL.2015.08.016

    Article  Google Scholar 

  77. A. Ali, J.-H. Tsai, K.-L. Tung, E. Drioli, F. Macedonio, Designing and optimization of continuous direct contact membrane distillation process. Desalination 426, 97–107 (2018). https://doi.org/10.1016/J.DESAL.2017.10.041

    Article  Google Scholar 

  78. J. Xu, N.M. Srivatsa Bettahalli, S. Chisca, M.K. Khalid, N. Ghaffour, R. Vilagines, S.P. Nunes, Polyoxadiazole hollow fibers for produced water treatment by direct contact membrane distillation. Desalination 432, 32–39 (2018). https://doi.org/10.1016/J.DESAL.2017.12.014

    Article  Google Scholar 

  79. M. García-Payo, M. Izquierdo-Gil, C. Fernández-Pineda, Air gap membrane distillation of aqueous alcohol solutions. J. Membr. Sci. 169, 61–80 (2000). https://doi.org/10.1016/S0376-7388(99)00326-9

    Article  Google Scholar 

  80. J. Walton, H. Lu, C. Turner, Solar and Waste Heat Desalination by Membrane Distillation (2004). researchgate.net

  81. F. Bant, J. Simandl, Membrane distillation for dilute ethanol: separation from aqueous streams. J. Membr. Sci. 34, 2817–2836 (1999). https://doi.org/10.1081/SS-100100807

    Article  Google Scholar 

  82. F.A. Banat, J. Simandl, Desalination by mMembrane distillation: a parametric study. Sep. Sci. Technol. 33, 201–226 (1998). https://doi.org/10.1080/01496399808544764

    Article  Google Scholar 

  83. S. Kimura, S.-I. Nakao, S.-I. Shimatani, Transport phenomena in membrane distillation. J. Membr. Sci. 33, 285–298 (1987). https://doi.org/10.1016/S0376-7388(00)80286-0

    Article  Google Scholar 

  84. A.S. Alsaadi, N. Ghaffour, J.-D. Li, S. Gray, L. Francis, H. Maab, G.L. Amy, Modeling of air-gap membrane distillation process: a theoretical and experimental study. J. Membr. Sci. 445, 53–65 (2013). https://doi.org/10.1016/J.MEMSCI.2013.05.049

    Article  Google Scholar 

  85. M.N.A. Hawlader, R. Bahar, K.C. Ng, L.J.W. Stanley, Transport analysis of an air gap membrane distillation (AGMD) process. Desalin. Water Treat. 42, 333–346 (2012). https://doi.org/10.1080/19443994.2012.683260

    Article  Google Scholar 

  86. A.E. Khalifa, D.U. Lawal, M.A. Antar, Performance of air gap membrane distillation unit for water desalination, in Volume 6A: Energy. ASME, p. V06AT07A049 (2014). https://doi.org/10.1115/IMECE2014-36031

  87. I. Janajreh, K. El Kadi, R. Hashaikeh, R. Ahmed, Numerical investigation of air gap membrane distillation (AGMD): seeking optimal performance. Desalination 424, 122–130 (2017). https://doi.org/10.1016/J.DESAL.2017.10.001

    Article  Google Scholar 

  88. M. Asghari, A. Harandizadeh, M. Dehghani, H.R. Harami, Persian gulf desalination using air gap membrane distillation: numerical simulation and theoretical study. Desalination 374, 92–100 (2015). https://doi.org/10.1016/J.DESAL.2015.07.019

    Article  Google Scholar 

  89. J. Swaminathan, H.W. Chung, D.M. Warsinger, F.A. AlMarzooqi, H.A. Arafat, V.J.H. Lienhard, Energy efficiency of permeate gap and novel conductive gap membrane distillation. J. Membr. Sci. 502, 171–178 (2016). https://doi.org/10.1016/J.MEMSCI.2015.12.017

    Article  Google Scholar 

  90. H. Attia, M.S. Osman, D.J. Johnson, C. Wright, N. Hilal, Modelling of air gap membrane distillation and its application in heavy metals removal. Desalination 424, 27–36 (2017). https://doi.org/10.1016/J.DESAL.2017.09.027

    Article  Google Scholar 

  91. Q.F. Alsalhy, S.S. Ibrahim, F.A. Hashim, Experimental and theoretical investigation of air gap membrane distillation process for water desalination. Chem. Eng. Res. Des. 130, 95–108 (2018). https://doi.org/10.1016/J.CHERD.2017.12.013

    Article  Google Scholar 

  92. M. García-Payo, C. Rivier, I. Marison, U. von Stockar, Separation of binary mixtures by thermostatic sweeping gas membrane distillation: II. Experimental results with aqueous formic acid solutions. J. Membr. Sci. 198, 197–210 (2002). https://doi.org/10.1016/S0376-7388(01)00649-4

    Article  Google Scholar 

  93. M. Khayet, Membranes and theoretical modeling of membrane distillation: a review. Adv. Colloid Interface Sci. 164, 56–88 (2011). https://doi.org/10.1016/J.CIS.2010.09.005

    Article  Google Scholar 

  94. M. Khayet, M.P. Godino, J.I. Mengual, Possibility of nuclear desalination through various membrane distillation configurations: a comparative study. Int. J. Nucl. Desalin. 1, 30 (2003). https://doi.org/10.1504/IJND.2003.003441

    Article  Google Scholar 

  95. M. Khayet, M.P. Godino, J.I. Mengual, Theoretical and experimental studies on desalination using the sweeping gas membrane distillation method. Desalination 157, 297–305 (2003). https://doi.org/10.1016/S0011-9164(03)00409-0

    Article  Google Scholar 

  96. C.H. Lee, W.H. Hong, Effect of operating variables on the flux and selectivity in sweep gas membrane distillation for dilute aqueous isopropanol. J. Membr. Sci. 188, 79–86 (2001). https://doi.org/10.1016/S0376-7388(01)00373-8

    Article  Google Scholar 

  97. C. Boi, S. Bandini, G.C. Sarti, Pollutants removal from wastewaters through membrane distillation. Desalination 183, 383–394 (2005). https://doi.org/10.1016/J.DESAL.2005.03.041

    Article  Google Scholar 

  98. Z. Ding, L. Liu, Z. Li, R. Ma, Z. Yang, Experimental study of ammonia removal from water by membrane distillation (MD): the comparison of three configurations. J. Membr. Sci. 286, 93–103 (2006). https://doi.org/10.1016/J.MEMSCI.2006.09.015

    Article  Google Scholar 

  99. Z. Xie, T. Duong, M. Hoang, C. Nguyen, B. Bolto, Ammonia removal by sweep gas membrane distillation. Water Res. 43, 1693–1699 (2009). https://doi.org/10.1016/J.WATRES.2008.12.052

    Article  Google Scholar 

  100. M. Khayet, M.P. Godino, J.I. Mengual, Thermal boundary layers in sweeping gas membrane distillation processes. AIChE J. 48, 1488–1497 (2002). https://doi.org/10.1002/aic.690480713

    Article  Google Scholar 

  101. M. Khayet, P. Godino, J.I. Mengual, Theory and experiments on sweeping gas membrane distillation. J. Membr. Sci. 165, 261–272 (2000). https://doi.org/10.1016/S0376-7388(99)00236-7

    Article  Google Scholar 

  102. M. Khayet, P. Godino, J.I. Mengual, Nature of flow on sweeping gas membrane distillation. J. Membr. Sci. 170, 243–255 (2000). https://doi.org/10.1016/S0376-7388(99)00369-5

    Article  Google Scholar 

  103. K. Charfi, M. Khayet, M.J. Safi, Numerical simulation and experimental studies on heat and mass transfer using sweeping gas membrane distillation. Desalination 259, 84–96 (2010). https://doi.org/10.1016/J.DESAL.2010.04.028

    Article  Google Scholar 

  104. K.W. Lawson, D.R. Lloyd, Membrane distillation. J. Membr. Sci. 124, 1–25 (1997). https://doi.org/10.1016/S0376-7388(96)00236-0

    Article  Google Scholar 

  105. S. Bandini, C. Gostoli, G.C. Sarti, Separation efficiency in vacuum membrane distillation. J. Membr. Sci. 73, 217–229 (1992). https://doi.org/10.1016/0376-7388(92)80131-3

    Article  Google Scholar 

  106. S. Bandini, G.C. Sarti, Heat and mass transport resistances in vacuum membrane distillation per drop. AIChE J. 45, 1422–1433 (1999). https://doi.org/10.1002/aic.690450707

    Article  Google Scholar 

  107. K.W. Lawson, D.R. Lloyd, Membrane distillation. I. Module design and performance evaluation using vacuum membrane distillation. J. Membr. Sci. 120, 111–121 (1996). https://doi.org/10.1016/0376-7388(96)00140-8

    Article  Google Scholar 

  108. R. Bhardwaj, M.V. ten Kortenaar, R.F. Mudde, Maximized production of water by increasing area of condensation surface for solar distillation. Appl. Energy 154, 480–490 (2015). https://doi.org/10.1016/J.APENERGY.2015.05.060

    Article  Google Scholar 

  109. M.A. Eltawil, Z. Zhengming, L. Yuan, A review of renewable energy technologies integrated with desalination systems. Renew. Sustain. Energy Rev. 13, 2245–2262 (2009). https://doi.org/10.1016/J.RSER.2009.06.011

    Article  Google Scholar 

  110. S.A. Kalogirou, Seawater desalination using renewable energy sources. Prog. Energy Combust. Sci. 31, 242–281 (2005). https://doi.org/10.1016/J.PECS.2005.03.001

    Article  Google Scholar 

  111. G. Xiao, X. Wang, M. Ni, F. Wang, W. Zhu, Z. Luo, K. Cen, A review on solar stills for brine desalination. Appl. Energy 103, 642–652 (2013). https://doi.org/10.1016/J.APENERGY.2012.10.029

    Article  Google Scholar 

  112. C. Li, Y. Goswami, E. Stefanakos, Solar assisted sea water desalination: a review. Renew. Sustain. Energy Rev. 19, 136–163 (2013). https://doi.org/10.1016/J.RSER.2012.04.059

    Article  Google Scholar 

  113. M.S. Hanra, Desalination of seawater using nuclear heat. Desalination 132, 263–268 (2000). https://doi.org/10.1016/S0011-9164(00)00158-2

    Article  Google Scholar 

  114. Hybrid Desalination Plant at Kalpakkam—The Hindu [WWW Document], n.d.

  115. M.A. Al-Weshahi, A. Anderson, G. Tian, B.M.A. Makhdoum, Validation of simulation model for cogeneration power and water desalination plant. Int. J. Model. Optim. (2013). https://doi.org/10.7763/IJMO.2013.V3.232

    Article  Google Scholar 

  116. IPSEpro [WWW Document], n.d.

  117. MDK [WWW Document], n.d.

  118. M.A. Al-Weshahi, A. Anderson, G. Tian, Exergy efficiency enhancement of MSF desalination by heat recovery from hot distillate water stages. Appl. Therm. Eng. 53, 226–233 (2013). https://doi.org/10.1016/J.APPLTHERMALENG.2012.02.013

    Article  Google Scholar 

  119. Vapor Compression | Aqua-Chem [WWW Document], n.d.

  120. A. Saleh, J.A. Qudeiri, M.A. Al-Nimr, Performance investigation of a salt gradient solar pond coupled with desalination facility near the Dead Sea. Energy 36, 922–931 (2011). https://doi.org/10.1016/J.ENERGY.2010.12.018

    Article  Google Scholar 

  121. M.V. Rane, Y.S. Padiya, Heat pump operated freeze concentration system with tubular heat exchanger for seawater desalination. Energy Sustain. Dev. 15, 184–191 (2011). https://doi.org/10.1016/J.ESD.2011.03.001

    Article  Google Scholar 

  122. W. Rice, D.S.C. Chau, Freeze desalination using hydraulic refrigerant compressors. Desalination 109, 157–164 (1997). https://doi.org/10.1016/S0011-9164(97)00061-1

    Article  Google Scholar 

  123. A.A. Madani, Zero-discharge direct-contact freezing/solar evaporator desalination complex. Desalination 85, 179–195 (1992). https://doi.org/10.1016/0011-9164(92)80004-S

    Article  Google Scholar 

  124. A.I. Lloyd, An integral design for desalination plant using the secondary refrigerant freeze process. Desalination 21, 137–146 (1977). https://doi.org/10.1016/S0011-9164(00)80312-4

    Article  Google Scholar 

  125. W. Gu, Y.-B. Lin, Y.-J. Xu, W.-B. Chen, J. Tao, S. Yuan, Gravity-induced sea ice desalination under low temperature. Cold Reg. Sci. Technol. 86, 133–141 (2013). https://doi.org/10.1016/J.COLDREGIONS.2012.10.004

    Article  Google Scholar 

  126. A.A.A. Attia, New proposed system for freeze water desalination using auto reversed R-22 vapor compression heat pump. Desalination 254, 179–184 (2010). https://doi.org/10.1016/J.DESAL.2009.11.030

    Article  Google Scholar 

  127. P. Wang, T.-S. Chung, A conceptual demonstration of freeze desalination–membrane distillation (FD–MD) hybrid desalination process utilizing liquefied natural gas (LNG) cold energy. Water Res. 46, 4037–4052 (2012). https://doi.org/10.1016/j.watres.2012.04.042

    Article  Google Scholar 

  128. A.M. El-Nashar, Solar desalination using the vacuum freezing ejector absorption (VFEA) process. Desalination 49, 293–319 (1984). https://doi.org/10.1016/0011-9164(84)85039-0

    Article  Google Scholar 

  129. P.M. Williams, M. Ahmad, B.S. Connolly, Freeze desalination: an assessment of an ice maker machine for desalting brines. Desalination 308, 219–224 (2013). https://doi.org/10.1016/J.DESAL.2012.07.037

    Article  Google Scholar 

  130. H.M.N. AlMadani, Water desalination by solar powered electrodialysis process. Renew. Energy 28, 1915–1924 (2003). https://doi.org/10.1016/S0960-1481(03)00014-4

    Article  Google Scholar 

  131. C. Charcosset, A review of membrane processes and renewable energies for desalination. Desalination 245, 214–231 (2009). https://doi.org/10.1016/J.DESAL.2008.06.020

    Article  Google Scholar 

  132. E. Korngold, L. Aronov, N. Daltrophe, Electrodialysis of brine solutions discharged from an RO plant. Desalination 242, 215–227 (2009). https://doi.org/10.1016/J.DESAL.2008.04.008

    Article  Google Scholar 

  133. M. Alhuyi Nazari, A. Aslani, R. Ghasempour, Analysis of solar farm site selection based on TOPSIS approach. Int. J. Soc. Ecol. Sustain. Dev. 9, 12–25 (2018)

    Article  Google Scholar 

  134. R. Ghasempour, M.A. Nazari, M. Ebrahimi, M.H. Ahmadi, H. Hadiyanto, MCDM approach for selecting solar plants site and technology: a review. Int. J. Renew. Energy Dev. (2017). https://doi.org/10.14710/ijred.8.1.15-25

    Article  Google Scholar 

  135. J.E. Lundstrom, Water desalting by solar powered electrodialysis. Desalination 31, 469–488 (1979). https://doi.org/10.1016/S0011-9164(00)88551-3

    Article  Google Scholar 

  136. O. Kuroda, S. Takahashi, S. Kubota, K. Kikuchi, Y. Eguchi, Y. Ikenaga, N. Sohma, K. Nishinoiri, S. Wakamatsu, S. Itoh, An electrodialysis sea water desalination system powered by photovoltaic cells. Desalination 67, 33–41 (1987). https://doi.org/10.1016/0011-9164(87)90229-3

    Article  Google Scholar 

  137. M.R. Adiga, S.K. Adhikary, P.K. Narayanan, W.P. Harkare, S.D. Gomkale, K.P. Govindan, Performance analysis of photovoltaic electrodialysis desalination plant at Tanote in Thar desert. Desalination 67, 59–66 (1987). https://doi.org/10.1016/0011-9164(87)90232-3

    Article  Google Scholar 

  138. N. Ishimaru, Solar photovoltaic desalination of brackish water in remote areas by electrodialysis. Desalination 98, 485–493 (1994). https://doi.org/10.1016/0011-9164(94)00175-8

    Article  Google Scholar 

  139. J. Uche, F. Círez, A.A. Bayod, A. Martínez, On-grid and off-grid batch-ED (electrodialysis) process: simulation and experimental tests. Energy 57, 44–54 (2013). https://doi.org/10.1016/J.ENERGY.2013.02.056

    Article  Google Scholar 

  140. J.M. Ortiz, E. Expósito, F. Gallud, V. García-García, V. Montiel, A. Aldaz, Photovoltaic electrodialysis system for brackish water desalination: modeling of global process. J. Membr. Sci. 274, 138–149 (2006). https://doi.org/10.1016/J.MEMSCI.2005.08.006

    Article  Google Scholar 

  141. J.M. Ortiz, E. Expósito, F. Gallud, V. García-García, V. Montiel, A. Aldaz, Desalination of underground brackish waters using an electrodialysis system powered directly by photovoltaic energy. Sol. Energy Mater. Sol. Cells 92, 1677–1688 (2008). https://doi.org/10.1016/J.SOLMAT.2008.07.020

    Article  Google Scholar 

  142. A. Al-Karaghouli, D. Renne, L.L. Kazmerski, Solar and wind opportunities for water desalination in the Arab regions. Renew. Sustain. Energy Rev. 13, 2397–2407 (2009). https://doi.org/10.1016/J.RSER.2008.05.007

    Article  Google Scholar 

  143. Solar Water Distilation | The Sietch Blog [WWW Document], n.d.

  144. S. Kumar, G.N. Tiwari, Life cycle cost analysis of single slope hybrid (PV/T) active solar still. Appl. Energy 86, 1995–2004 (2009). https://doi.org/10.1016/J.APENERGY.2009.03.005

    Article  Google Scholar 

  145. S.M. El-Haggar, A.A. Awn, Optimum conditions for a solar still and its use for a greenhouse using the nutrient film technique. Desalination 94, 55–68 (1993). https://doi.org/10.1016/0011-9164(93)80154-F

    Article  Google Scholar 

  146. Guidelines for Drinking-Water Quality (2004)

  147. G.N. Tiwari, S. Suneja, Performance evaluation of an inverted absorber solar still. Energy Convers. Manag. 39, 173–180 (1998). https://doi.org/10.1016/S0196-8904(96)00227-0

    Article  Google Scholar 

  148. H. Al-Hinai, M.S. Al-Nassri, B.A. Jubran, Effect of climatic, design and operational parameters on the yield of a simple solar still. Energy Convers. Manag. 43, 1639–1650 (2002). https://doi.org/10.1016/S0196-8904(01)00120-0

    Article  Google Scholar 

  149. Y.F. Nassar, S.A. Yousif, A.A. Salem, The second generation of the solar desalination systems. Desalination 209, 177–181 (2007). https://doi.org/10.1016/J.DESAL.2007.04.039

    Article  Google Scholar 

  150. S. Al-Kharabsheh, D.Y. Goswami, Experimental study of an innovative solar water desalination system utilizing a passive vacuum technique. Sol. Energy 75, 395–401 (2003). https://doi.org/10.1016/J.SOLENER.2003.08.031

    Article  ADS  Google Scholar 

  151. S. Abdallah, O.O. Badran, Sun tracking system for productivity enhancement of solar still. Desalination 220, 669–676 (2008). https://doi.org/10.1016/J.DESAL.2007.02.047

    Article  Google Scholar 

  152. B.A.H.M. Abu-HijlehRababa’h, Experimental study of a solar still with sponge cubes in basin. Energy Convers. Manag. 44, 1411–1418 (2003). https://doi.org/10.1016/S0196-8904(02)00162-0

    Article  Google Scholar 

  153. K.K. Murugavel, K. Srithar, Performance study on basin type double slope solar still with different wick materials and minimum mass of water. Renew. Energy 36, 612–620 (2011). https://doi.org/10.1016/J.RENENE.2010.08.009

    Article  Google Scholar 

  154. B.S. Kumar, S. Kumar, R. Jayaprakash, Performance analysis of a “V” type solar still using a charcoal absorber and a boosting mirror. Desalination 229, 217–230 (2008). https://doi.org/10.1016/J.DESAL.2007.09.009

    Article  Google Scholar 

  155. V. Manikandan, K. Shanmugasundaram, S. Shanmugan, B. Janarthanan, J. Chandrasekaran, Wick type solar stills: a review. Renew. Sustain. Energy Rev. 20, 322–335 (2013). https://doi.org/10.1016/J.RSER.2012.11.046

    Article  Google Scholar 

  156. P. Wassouf, T. Peska, R. Singh, A. Akbarzadeh, Novel and low cost designs of portable solar stills. Desalination 276, 294–302 (2011). https://doi.org/10.1016/J.DESAL.2011.03.069

    Article  Google Scholar 

  157. O. Mahian, A. Kianifar, Mathematical modelling and experimental study of a solar distillation system. Proc. IMech. Part C J. Mech. Eng. Sci. 225, 1203–1212 (2011). https://doi.org/10.1177/2041298310392648

    Article  Google Scholar 

  158. A. Kianifar, S. Zeinali Heris, O. Mahian, Exergy and economic analysis of a pyramid-shaped solar water purification system: active and passive cases. Energy 38, 31–36 (2012). https://doi.org/10.1016/J.ENERGY.2011.12.046

    Article  Google Scholar 

  159. Y. Taamneh, M.M. Taamneh, Performance of pyramid-shaped solar still: experimental study. Desalination 291, 65–68 (2012). https://doi.org/10.1016/J.DESAL.2012.01.026

    Article  Google Scholar 

  160. T. Arunkumar, K. Vinothkumar, A. Ahsan, R. Jayaprakash, S. Kumar, Experimental study on various solar still designs. ISRN Renew. Energy 2012, 1–10 (2012). https://doi.org/10.5402/2012/569381

    Article  Google Scholar 

  161. J.I. Eze, O. Ojike, Comparative evaluation of rectangular and pyramid-shaped solar stills using saline water. Int. J. Phys. Sci. 7, 5202–5208 (2012). https://doi.org/10.5897/IJPS11.1503

    Article  Google Scholar 

  162. S. Kalaivani, S.R. Radhakrishnan, Heat mass transfer and thermophysical analysis for pyramid type solar still (n.d.)

  163. R. Sathyamurthy, P.K. Nagarajan, J. Subramani, D. Vijayakumar, M.A.K. Ali, Effect of water mass on triangular pyramid solar still using phase change material as storage medium. Energy Proc. 61, 2224–2228 (2014). https://doi.org/10.1016/J.EGYPRO.2014.12.114

    Article  Google Scholar 

  164. A. Senthil Rajan, K. Raja, P. Marimuthu, Increasing the productivity of pyramid solar still augmented with biomass heat source and analytical validation using RSM. Desalin. Water Treat. (2015). https://doi.org/10.1080/19443994.2014.995133

    Article  Google Scholar 

  165. A.E. Kabeel, M. Abdelgaied, N. Almulla, Performances of pyramid-shaped solar still with different glass cover angles: experimental study, in 2016 7th International Renewable Energy Congress (IREC). (IEEE, 2016), pp. 1–6. https://doi.org/10.1109/IREC.2016.7478869

  166. A.E. Kabeel, A.M. Hamed, S.A. El-Agouz, Cost analysis of different solar still configurations. Energy 35, 2901–2908 (2010). https://doi.org/10.1016/J.ENERGY.2010.03.021

    Article  Google Scholar 

  167. S.A. Kalogirou, Solar thermal collectors and applications. Prog. Energy Combust. Sci. 30, 231–295 (2004). https://doi.org/10.1016/J.PECS.2004.02.001

    Article  Google Scholar 

  168. M. Al-harahsheh, M. Abu-arabi, H. Mousa, Z. Alzghoul, Solar desalination using solar still enhanced by external solar collector and PCM. Appl. Therm. Eng. 128, 1030–1040 (2018). https://doi.org/10.1016/j.applthermaleng.2017.09.073

    Article  Google Scholar 

  169. A.E. Kabeel, M. Abdelgaied, A. Eisa, Effect of graphite mass concentrations in a mixture of graphite nanoparticles and paraffin wax as hybrid storage materials on performances of solar still. Renew. Energy 132, 119–128 (2019). https://doi.org/10.1016/j.renene.2018.07.147

    Article  Google Scholar 

  170. L.G. Chen, H.J. Feng, Z.H. Xie, F.R. Sun, Progress of constructal theory in China over the past decade. Int. J. Heat Mass Transf. 130, 393–419 (2019)

    Article  Google Scholar 

  171. W. Chen, C. Zou, X. Li, H. Liang, Application of recoverable carbon nanotube nanofluids in solar desalination system: an experimental investigation. Desalination 451, 92–101 (2019). https://doi.org/10.1016/j.desal.2017.09.025

    Article  Google Scholar 

  172. Q. Wang, Z. Zhu, H. Zheng, Investigation of a floating solar desalination film. Desalination 447, 43–54 (2018). https://doi.org/10.1016/j.desal.2018.09.005

    Article  Google Scholar 

  173. M. Bahrami, V.M. Avargani, M. Bonyadi, Comprehensive experimental and theoretical study of a novel still coupled to a solar dish concentrator. Appl. Therm. Eng. 151, 77–89 (2019). https://doi.org/10.1016/j.applthermaleng.2019.01.103

    Article  Google Scholar 

  174. H.M. Wilson, A.R. Shakeelur Rahman, A.E. Parab, N. Jha, Ultra-low cost cotton based solar evaporation device for seawater desalination and waste water purification to produce drinkable water. Desalination 456, 85–96 (2019). https://doi.org/10.1016/j.desal.2019.01.017

    Article  Google Scholar 

  175. P. Adler, W.H. Organization. Fluorides and human health (1970)

  176. S.K. Jha, R.K. Singh, T. Damodaran, V.K. Mishra, D.K. Sharma, D. Rai, Fluoride in groundwater: toxicological exposure and remedies. J. Toxicol. Environ. Heal. Part B 16, 52–66 (2013). https://doi.org/10.1080/10937404.2013.769420

    Article  Google Scholar 

  177. J.K. Fawell, World Health Organization, Fluoride in Drinking-Water. (IWA Pub, 2006)

  178. B.B.K. Dawson, Groundwater Quality in Coachella Valley (2012)

  179. WaterPyramid | Aqua-Aero WaterSystems (AAWS) [WWW Document], n.d.

  180. Watercone® The Product [WWW Document], n.d.

  181. Watercone® Awards [WWW Document], n.d.

  182. WHO, Water Sanitation and Health. (WHO, 2018)

  183. A. Ahsan, M. Imteaz, U.A. Thomas, M. Azmi, A. Rahman, N.N. Nik Daud, Parameters affecting the performance of a low cost solar still. Appl. Energy 114, 924–930 (2014). https://doi.org/10.1016/J.APENERGY.2013.08.066

    Article  Google Scholar 

  184. S. Ravishankara, Phase change material on augmentation of fresh water production using pyramid solar still (2013). search.proquest.com

  185. R. Sathyamurthy, P.K. Nagarajan, H.J. Kennady, T.S. Ravikumar, V. Paulson, A. Ahsan, Enhancing the heat transfer of triangular pyramid solar still using phase change material as storage material. Front. Heat Mass Transf. (2014). https://doi.org/10.5098/hmt.5.3

    Article  Google Scholar 

  186. P.K. Nagarajan, D. Vijayakumar, V. Paulson, R.K. Chitharthan, Y. Narashimulu, S. Ravishankar, Performance evaluation of triangular pyramid solar still for enhancing productivity of fresh water. Res. J. Pharm. Biol. Chem. Sci. 5, 764–771 (2014)

    Google Scholar 

  187. B. Janarthanan, J. Chandrasekaran, S. Kumar, Performance of floating cum tilted-wick type solar still with the effect of water flowing over the glass cover. Desalination 190, 51–62 (2006). https://doi.org/10.1016/J.DESAL.2005.08.005

    Article  Google Scholar 

  188. V. Velmurugan, C.K. Deenadayalan, H. Vinod, K. Srithar, Desalination of effluent using fin type solar still. Energy 33, 1719–1727 (2008). https://doi.org/10.1016/J.ENERGY.2008.07.001

    Article  Google Scholar 

  189. T. Rajaseenivasan, K.K. Murugavel, T. Elango, R.S. Hansen, A review of different methods to enhance the productivity of the multi-effect solar still. Renew. Sustain. Energy Rev. 17, 248–259 (2013). https://doi.org/10.1016/J.RSER.2012.09.035

    Article  Google Scholar 

  190. P.U. Suneesh, R. Jayaprakash, T. Arunkumar, D. Denkenberger, Effect of air flow on “V” type solar still with cotton gauze cooling. Desalination 337, 1–5 (2014). https://doi.org/10.1016/J.DESAL.2013.12.035

    Article  Google Scholar 

  191. B.A. Akash, M.S. Mohsen, W. Nayfeh, Experimental study of the basin type solar still under local climate conditions. Energy Convers. Manag. 41, 883–890 (2000). https://doi.org/10.1016/S0196-8904(99)00158-2

    Article  Google Scholar 

  192. A. Bejan, From heat transfer principles to shape and structure in nature: constructal theory. Trans. ASME J. Heat Transf. 122(3), 430–449 (2000)

    Article  Google Scholar 

  193. A. Bejan, S. Lorente, Design with Constructal Theory (Wiley, New York, 2008).

    Book  Google Scholar 

  194. A. Bejan, Freedom and Evolution: Hierarchy in Nature, Society and Science (Springer, Berlin, 2020).

    Book  Google Scholar 

  195. L.G. Chen, Progress in study on constructal theory and its applications. Sci. China Technol. Sci. 55(3), 802–820 (2012)

    Article  ADS  Google Scholar 

  196. L.G. Chen, A.B. Yang, H.J. Feng, Y.L. Ge, S.J. Xia, Constructal designs for eight types of heat sinks. Sci. China Technol. Sci. 63(6), 879–911 (2020)

    Article  ADS  Google Scholar 

  197. C. Chen, J. You, H.J. Feng, L.G. Chen, A multi-objective study on the constructal design of non-uniform heat generating disc cooled by radial- and dendritic-pattern cooling channels. Sci. China Technol. Sci. 64(4), 729–744 (2021)

    Article  ADS  Google Scholar 

  198. L.G. Chen, W.J. Wu, H.J. Feng, Constructal Design for Heat Conduction (Book Publisher International, London, 2021).

    Book  Google Scholar 

  199. H.J. Feng, C.G. Cai, L.G. Chen, Z.X. Wu, G. Lorenzini, Constructal design of a shell-and-tube condenser with ammonia-water working fluid. Int. Commun. Heat Mass Transf. 118, 104867 (2020)

    Article  Google Scholar 

  200. H.J. Feng, Z.J. Xie, L.G. Chen, Z.X. Wu, S.J. Xia, Constructal design for supercharged boiler superheater. Energy 191, 116484 (2020)

    Article  Google Scholar 

  201. W. Tang, H.J. Feng, L.G. Chen, Z.J. Xie, J.C. Shi, Constructal design for a boiler economizer. Energy 223, 120013 (2021)

    Article  Google Scholar 

  202. B. Andresen, Current trends in finite-time thermodynamics. Angew. Chem. Int. Ed. 50(12), 2690–2704 (2011)

    Article  Google Scholar 

  203. B. Andresen, R.S. Berry, M.J. Ondrechen, P. Salamon, Thermodynamics for processes in finite time. Acc. Chem. Res. 17(8), 266–271 (1984)

    Article  Google Scholar 

  204. A. Bejan, Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes. J. Appl. Phys. 79(3), 1191–1218 (1996)

    Article  ADS  Google Scholar 

  205. L.G. Chen, C. Wu, F.R. Sun, Finite time thermodynamic optimization or entropy generation minimization of energy systems. J. Non-Equilib. Thermodyn. 24(4), 327–359 (1999)

    Article  ADS  Google Scholar 

  206. L.G. Chen, F.K. Meng, Y.L. Ge, H.J. Feng, S.J. Xia, Performance optimization of a class of combined thermoelectric heating devices. Sci. China Technol. Sci. 63(12), 2640–2648 (2020)

    Article  ADS  Google Scholar 

  207. L.G. Chen, F.K. Meng, Z.M. Ding, S.J. Xia, H.J. Feng, Thermodynamic modeling and analysis of an air-cooled small space thermoelectric cooler. Eur. Phys. J. Plus 135(1), 80 (2020)

    Article  Google Scholar 

  208. H.J. Feng, W.X. Qin, L.G. Chen, C.G. Cai, Y.L. Ge, S.J. Xia, Power output, thermal efficiency and exergy-based ecological performance optimizations of an irreversible KCS-34 coupled to variable temperature heat reservoirs. Energy Convers. Manag. 205, 112424 (2020)

    Article  Google Scholar 

  209. H.J. Feng, J. You, L.G. Chen, Y.L. Ge, S.J. Xia, Constructal design of a non-uniform heat generating disc based on entropy generation minimization. Eur. Phys. J. Plus 135(2), 257 (2020)

    Article  Google Scholar 

  210. Y.L. Ge, L.G. Chen, H.J. Feng, Ecological optimization of an irreversible Diesel cycle. Eur. Phys. J. Plus 136(2), 198 (2021)

    Article  Google Scholar 

  211. S.S. Qiu, Z.M. Ding, L.G. Chen, Performance evaluation and parametric optimum design of irreversible thermionic generators based on van der Waals heterostructures. Energy Convers. Manag. 225, 113360 (2020)

    Article  Google Scholar 

  212. S.S. Shi, Y.L. Ge, L.G. Chen, F.J. Feng, Four objective optimization of irreversible Atkinson cycle based on NSGA-II. Entropy 22(10), 1150 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  213. S. Sieniutycz, Complexity and Complex Thermo-Economic Systems (Elsevier, Amsterdam, 2020).

    Google Scholar 

  214. R.B. Wang, Y.L. Ge, L.G. Chen, H.J. Feng, Z.X. Wu, Power and thermal efficiency optimization of an irreversible steady flow Lenoir cycle. Entropy 23(4), 425 (2021)

    Article  ADS  Google Scholar 

  215. H. Wu, Y.L. Ge, L.G. Chen, H.J. Feng, Power, efficiency, ecological function and ecological coefficient of performance optimizations of an irreversible Diesel cycle based on finite piston speed. Energy 216, 119235 (2021)

    Article  Google Scholar 

  216. L. Zhang, L.G. Chen, S.J. Xia, Y.L. Ge, C. Wang, H.J. Feng, Multi-objective optimization for helium-heated reverse water gas shift reactor by using NSGA-II. Int. J. Heat Mass Transf. 148, 119025 (2020)

    Article  Google Scholar 

  217. A. Bejan, Constructal thermodynamics. Int. J. Heat Technol. 34(Special Issue 1), S1–S8 (2016)

    Article  Google Scholar 

  218. H.J. Feng, Z.X. Wu, L.G. Chen, Y.L. Ge, Constructal thermodynamic optimization for dual-pressure organic Rankine cycle in waste heat utilization system. Energy Convers. Manag. 227, 113585 (2021)

    Article  Google Scholar 

  219. Z.X. Wu, H.J. Feng, L.G. Chen, W. Tang, J.Z. Shi, Y.L. Ge, Constructal thermodynamic optimization for ocean thermal energy conversion system with dual-pressure organic Rankine cycle. Energy Convers. Manag. 210, 112727 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This paper is supported by The National Natural Science Foundation of China (Project No. 51779262). The authors wish to thank the reviewers for their careful, unbiased and constructive suggestions, which led to this revised manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Hossein Ahmadi, Fathollah Pourfayaz, Ravinder Kumar or Lingen Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourkiaei, S.M., Ahmadi, M.H., Ghazvini, M. et al. Status of direct and indirect solar desalination methods: comprehensive review. Eur. Phys. J. Plus 136, 602 (2021). https://doi.org/10.1140/epjp/s13360-021-01560-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01560-3

Navigation