Skip to main content
Log in

Progress in study on constructal theory and its applications

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The emergence and development of constructal theory, which has been a new discipline branch to research sorts of structures in nature and engineering, are reviewed. The core of the constructal theory is that various shapes and structures of the matters in nature are generated from the tendency to obtain optimal performance. Constructal theory and its application are summarized, from disciplines such as heat, mechanism, fluid flow, electricity, magnetism and chemistry, to life and non-life systems in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bejan A, Mamut E, eds. Proceedings of NATO Adramced Study Institute on Thermodynamics and the Optimization of Complex Energy Systems, vol 1. Neptun: NATO Advanced Study Institute, 1998

    Google Scholar 

  2. Chen L, Sun F. Advances in Finite Time Thermodynamics: Analysis and Optimization. New York: Nova Science Publishers, 2003

    Google Scholar 

  3. Chen L, Wu C, Sun F. Finite time thermodynamic optimization or entropy generation minimization of energy systems. J Non-Equilib Thermodyn, 1999, 24(4): 327–359

    Article  MATH  Google Scholar 

  4. Chen L, Sun F, Wu C. Finite time thermodynamic theory and applications: States of the arts (in Chinese). Prog Phys, 1998, 18(4): 395–422

    Google Scholar 

  5. Bejan A. Entropy generation minimization: the new thermodynamics of finite size devices and finite time process. J Appl Phys, 1996, 79(3): 1191–1218

    Article  Google Scholar 

  6. Bejan A. Entropy Generation Minimization. Boca Raton FL: CRC Press, 1996

    MATH  Google Scholar 

  7. Chen L. Finite Time Thermodynamic Analysis of Irreversible Processes and Cycles (in Chinese). Beijing: Higher Education Press, 2005

    Google Scholar 

  8. Radcenco V. Generalized Thermodynamics. Bucharest: Editura Technica, 1994

    Google Scholar 

  9. Bejan A. Street network theory of organization in nature. J Adv Transp, 1996, 30(2): 85–107

    Article  Google Scholar 

  10. Bejan A. Constructal-theory network of conducting paths for cooling a heat generating volume. Trans ASME, J Heat Transfer, 1997, 40(4): 799–816

    MATH  Google Scholar 

  11. Bejan A. Shape and Structure, from Engineering to Nature. Cambridge, UK: Cambridge University Press, 2000

    MATH  Google Scholar 

  12. Bejan A. Advanced Engineering Thermodynamics. 2nd ed. New York: Wiley, 1997

    Google Scholar 

  13. Bejan A, Dincer I, Lorente S, et al. Porous and Complex Flow Structures in Modern Technologies. New York: Springer, 2004

    Google Scholar 

  14. Rosa R N, Reis A H, Miguel A F, eds. Bejan’s Constructal Theory of Shape and Structure. Evora: Evora Geophysics Center, University of Evora, 2004

    Google Scholar 

  15. Ingham D B, Bejan A, Mamut E, et al. Emerging Technologies and Techniques in Porous Media. Dordecht: Kluwer Academic Publishers, 2004

    Book  MATH  Google Scholar 

  16. Bejan A, Lorente S. The Constructal Law (La Loi Constructale). Paris: L’Harmatan, 2005

    Google Scholar 

  17. Bejan A, Lorente S, Miguel A, et al. Along with Constructal Theory. In: Hernandez J, Cosinschi M, eds. UNIL FGSE Workshop Series No 1. University of Lausanne, Faculty of Geosciences and the Environment, Switzerland, 2006

    Google Scholar 

  18. Bejan A, Merkx G W. Constructal Theory of Social Dynamics. New York: Springer, 2007

    Google Scholar 

  19. Bejan A, Lorente S. Design with Constructal Theory. New Jersey: Wiley, 2008

    Book  Google Scholar 

  20. Bejan A, Lorente S, Miguel A F, et al. Constructal Human Dynamics, Security & Sustainability. Amsterdam: IOS Press, 2009

    Google Scholar 

  21. Ledezma G A. Geometric optimization of heat transfer devices. Doctoral Dissertation. Durham: Duke University, 1997

    Google Scholar 

  22. Neagu M. Characteristics and optimization of composite systems with heat conduction. Doctoral Dissertation. Durham: Duke University, 1999

    Google Scholar 

  23. Alebrahim A. Geometric optimization of thermal systems. Doctoral Dissertation. Durham: Duke University, 2000

    Google Scholar 

  24. Hernandez G. Platform design for customizable products as a problem of ace in a geometric space. Doctoral Dissertation. Atlanta: Georgia Institute of Technology, 2001

    Google Scholar 

  25. Vie P J S. Characterisation and optimisation of the polymer electrolyte Fuel Cell. Doctoral Dissertation. Trondheim: Norwegian University of Science and Technology, 2002

    Google Scholar 

  26. Ordonez J C. Integrative energy-systems design: system structure from thermodynamic optimization. Doctoral Dissertation. Durham: Duke University, 2003

    Google Scholar 

  27. Wechsatol W. Tree-shaped convention flow for heating and cooling. Doctoral Dissertation. Durham: Duke University, 2004

    Google Scholar 

  28. Gosselin L. Multidisciplinary optimization of heat transfer and fluid flow systems. Doctoral Dissertation. Durham: Duke University, 2004

    Google Scholar 

  29. Senn S M. Multi-scale branching flow structures optimizing high-performance polymer electrolyte fuel cells. Doctoral Dissertation. Zurich: Swiss Federal Institute of Technology in Zurich, 2005

    Google Scholar 

  30. da Silva A K. Constructal multi-scale heat exchangers. Doctoral Dissertation. Durham: Duke University, 2005.

    Google Scholar 

  31. Azoumah Y. Conception optimale, par approache constructale, de reseaux arborescents de transferts couples pour reacteurs thermochimiques. Doctoral Dissertation. Perpignan: I’Universite de Perpignan, 2005

    Google Scholar 

  32. Raja V A P. Computational and experimental analysis of dendritic constructal heat exchanger. Doctoral Dissertation. New Delhi: Indian Institute of Technology, 2007

    Google Scholar 

  33. Wang X Q. New Approaches to micro-electronic component cooling. Doctoral Dissertation. Singapore: National University of Singapore, 2007

    Google Scholar 

  34. Robbe M. CFD analysis of the thermo-fluidynamic performance of constructal structures. Ph D Thesis, Roma: University of Roma 1, 2007

    Google Scholar 

  35. Zhou S. Constructal optimization for heat conduction and some expanding researches (in Chinese). Doctoral Dissertation. Wuhan: Naval University of Engineering, 2007.

    Google Scholar 

  36. Wiker N. Optimization in continuum flow problems. Doctoral Dissertation. Linkoping: Linkoping University, 2008

    Google Scholar 

  37. Wei S. Constructal entransy dissipation rate minimization for heat conduction (in Chinese). Doctoral Dissertation. Wuhan: Naval University of Engineering, 2009

    Google Scholar 

  38. Xie Z. Multi-objective constructal optimizations for three classes of heat transfer structures. Doctoral Dissertation. Wuhan: Naval University of Engineering, 2010

    Google Scholar 

  39. Xiao Q. Constructal optimizations for heat and mass transfer based on entransy dissipation extremum principle (in Chinese). Doctoral Dissertation. Wuhan, Naval University of Engineering, 2011

    Google Scholar 

  40. Xia Z. Augmentation and optimization on heat conduction and convection processes (in Chinese). Doctoral Dissertation. Beijing: Tsinghua University, 2001

    Google Scholar 

  41. Chen B. Sensitivity analyses and optimization designs of heat conduction and structure coupling system (in Chinese). Doctoral Dissertation. Dalian: Dalian University of Science and Technology, 2001

    Google Scholar 

  42. Xu G. Applications of the non-equilibrium thermodynamics in the field of river dynamics (in Chinese). Doctoral Dissertation. Hangzhou: Zhejiang University, 2001

    Google Scholar 

  43. Zuo K. Research of theory and application about topology optimization of continuum structure (in Chinese). Doctoral Dissertation. Wuhan: Huazhong University of Science and Technology, 2004

    Google Scholar 

  44. Cheng X. Entransy and its applications in heat transfer optimization (in Chinese). Doctoral Dissertation. Beijing: Tsinghua University, 2004

    Google Scholar 

  45. Bernot M. Transport optimal et irrigation (Optimal transport and irrigation). Doctoral Dissertation. Cachan: Ecole Nomale Superieure de Cachan, 2005

    Google Scholar 

  46. Wang B. Optimum design of multifunction honeycomb structures (in Chinese). Doctoral Dissertation. Dalian: Dalian University of Science and Technology, 2007

    Google Scholar 

  47. Feng Y. Fractal geometry theory and application in thermal condutivity of porous media and nanofluids (in Chinese). Doctoral Dissertation. Wuhan: Huazhong University of Science and Technology, 2007

    Google Scholar 

  48. Zou M. Fractal theory and its applications to porous media, rough surface and thermal contact conductance (in Chinese). Doctoral Dissertation. Wuhan: Huazhong University of Science and Technology, 2007

    Google Scholar 

  49. Schymanski S J. Transpiration as the leak in the carbon factory: A model of self-optimising vegetation. Doctoral Dissertation. Perth: The University of Western Australia, 2007

    Google Scholar 

  50. Tomko M. Destination descriptions in urban environments. Doctoral Dissertation. Melbourne: The University of Melbourne, 2007

    Google Scholar 

  51. Zhang Y. Heat transfer performance of cellular materials and optimization design of heat dissipation structure (in Chinese). Doctoral Dissertation. Dalian: Dalian University of Science and Technology, 2008

    Google Scholar 

  52. He D. Improved approaches and application of evolutionary structural optimization (in Chinese). Doctoral Dissertation. Dalian: Dalian University of Science and Technology, 2008

    Google Scholar 

  53. Li X. Numerical and experimental study of the heat transfer enhancement in turbulent channel flow (in Chinese). Doctoral Dissertation. Beijing: Tsinghua University, 2008

    Google Scholar 

  54. Yuan M. Research on some flow properties of fluid in porous media (in Chinese). Doctoral Dissertation. Wuhan: Huazhong University of Science and Technology, 2008

    Google Scholar 

  55. Xu P. Transport properties of fractal tree-like branching network (in Chinese). Doctoral Dissertation. Wuhan: Huazhong University of Science and Technology, 2008

    Google Scholar 

  56. Guillaume M. Preparee au laboratoire de physico-chimie et de thermohydraulique multiphasique du commissariat a l’energie atomique de grenoble. Doctoral Dissertation. Nancy: Nancy Universite, 2008

    Google Scholar 

  57. da Silva S S G. Modulation of lung development by in utero gene transfer. Doctoral Dissertation. Braga: Universidade do Minho, 2009

    Google Scholar 

  58. Bejan A. How nature takes shape: extensions of constuctal theory to ducts, river, turbulence, cracks, dendritic crystals and spatial economics. Int J Therm Sci, 1999, 38(8): 653–663

    Article  Google Scholar 

  59. Bejan A. From heat transfer principles to shape and structure in nature: Constructal theory. Trans ASME, J Heat Transfer, 2000, 122(3): 430–449

    Article  Google Scholar 

  60. Bejan A, Lorente S. Thermodynamic optimization of flow geometry in mechanical and civil engineering. J Non-Equilib Thermodyn, 2001, 26(4): 305–354

    Article  Google Scholar 

  61. Zhou S, Chen L, Sun F. Constructal theory: a new direction for generalized thermodynamic optimization (in Chinese). J Therm Sci Tech, 2004, 3(4): 283–292

    Google Scholar 

  62. Bejan A, Lorente S. Constructal design and thermodynamic optimization. Annual Rev Heat Transfer, 2005, 14: 511–527

    Google Scholar 

  63. Lorente S, Bejan A. Svelteness, freedom to morph, and constructal multi-scale flow structures. Int J Thermal Sci 2005, 44(12): 1123–1130

    Article  Google Scholar 

  64. Bejan A, Lorente S. Constructal theory of generation of configuration in nature and engineering. J Appl Phys, 2006, 100(4): 041301

    Article  Google Scholar 

  65. Reis A H. Constructal theory: From engineering to physics, and how flow systems develop shape and structure. Appl Mech Rev, 2006, 59(5): 269–282

    Article  Google Scholar 

  66. Bejan A, Marden J H. Unifying constructal theory for scale effects in running, swimming and flying. J Exp Biol, 2006, 209(2): 238–248

    Article  Google Scholar 

  67. Fan Y, Luo L. Recent applications of advances in microchannel heat exchangers and multi-scale design optimization. Heat Transfer Eng, 2008, 29(5): 461–474

    Article  Google Scholar 

  68. Bejan A, Marden J H. The constructal unification of biological and geophysical design. Phys Life Rev, 2009, 6(2): 85–102

    Article  Google Scholar 

  69. Bejan A, Lorente S. The constructal law of design and evolution in nature. Phil Trans R Soc B: Biol Sci, 2010, 365(1545): 1335–1347

    Article  Google Scholar 

  70. Bejan A, Lorente S. The constructal law and the design of the biosphere: Nature and globalization. Trans ASME, J Heat Transfer, 2011, 133(1): 011001

    Article  Google Scholar 

  71. Mandelbrot B B. The Fractal Geometry of Nature. New York: W H Freeman, 1982

    MATH  Google Scholar 

  72. Yu B. Analysis of heat and mass transfer in fractal media (in Chinese). J Eng Thermophys, 2003, 24(3): 481–483

    Google Scholar 

  73. Prigogine I. From Being to Becoming. San Francisco: W H Freeman, 1980

    Google Scholar 

  74. Xu L. Principle of Least Action and the Development of Physics (in Chinese). Chengdu: Sichuan Education Press, 2001

    Google Scholar 

  75. Feynman R P. Feynman Lectures on Physics, vol 1 (in Chinese). Shanghai: Shanghai Scientific and Technical Press, 1983

    Google Scholar 

  76. Guo Z, Li D, Wang B. A novel concept for convective heat transfer enhancement. Int Heat Mass Transfer, 1998, 41(2): 2221–2225

    Article  MATH  Google Scholar 

  77. Guo Z. Mechanism and control of convective heat transfer — Coordination of velocity and heat flow fields. Chin Sci Bull, 2001, 46(7): 596–599

    Article  Google Scholar 

  78. Guo Z, Zhou S, Li Z et al. Theoretical analysis and experimental confirmation of the uniformity principle of temperature difference field in heat exchanger. Int J Heat Mass Transfer, 2002, 45(10): 2119–2127

    Article  Google Scholar 

  79. Tao W, Guo Z, Wang B. Field synergy principle — Its extension and verifications. Int J Heat Mass Transfer, 2002, 45(15): 3849–3856

    Article  MATH  Google Scholar 

  80. Guo Z Y, Wei S, Cheng X G. A novel method to improve the performance of heat exchanger—Temperature fields coordination of fluids. Chin Sci Bull, 2004, 49(1): 111–114

    Google Scholar 

  81. Guo Z. Principle of field coordination in heat exchangers and its applications (in Chinese). Chin J Mech Eng, 2003, 39(12): 1–9

    Article  Google Scholar 

  82. Guo Z, Cheng X, Xia Z. Least dissipation principle of heat transport potential capacity and its application in heat conduction optimization. Chin Sci Bull, 2003, 48(4): 406–410

    Google Scholar 

  83. Guo Z, Zhu H, Liang X. Entransy—A physical quantity describing heat transfer ability. Int J Heat Mass Transfer, 2007, 50(13–14): 2545–2556

    Article  MATH  Google Scholar 

  84. Dan N, Bejan A. Constructal tree networks for the time-dependent discharge of finite-size volume to one point. J Appl Phys, 1998, 84(6): 3042–3050

    Article  Google Scholar 

  85. Ledezma G A, Bejan A, Errera M R. Constructal tree networks for heat transfer. J Appl Phys, 1997, 82(1): 89–100

    Article  Google Scholar 

  86. Kuddusi L, Denton J C. Analytical solution for heat conduction problem in composite slab and its implementation in constructal solution for cooling of electronics. Eng Convers Mgmt, 2007, 48(4): 1089–1105

    Article  Google Scholar 

  87. Wu W, Chen L, Sun F. Improvement of tree-like network constructal method for heat conduction optimization. Sci China Ser-E: Tech Sci, 2006, 49(3): 332–341

    Article  Google Scholar 

  88. Wu W. Improvement of the heat conduction optimization method based on constructal theory. Master Thesis. Wuhan: Naval University of Engineering, 2005

    Google Scholar 

  89. Ghodoossi L, Egrican N. Exact solution for cooling of electronics using constructal theory. J Appl Phys, 2003, 93(8), 4922–4929

    Article  Google Scholar 

  90. Wu W, Chen L, Sun F. On the “area to point” flow problem based on constructal theory. Energy Convers Mgmt, 2007, 48(1): 101–105

    Article  Google Scholar 

  91. Ghodoossi S, Egrican N. Conductive cooling of triangular shaped electronics using constructal theory. Energy Convers Mgmt, 2004, 45(6): 811–828

    Article  Google Scholar 

  92. Neagu M, Bejan A. Three-dimensional tree constructs of ‘constant’ thermal resistance. J Appl Phys, 1999, 86(12): 7107–7115

    Article  Google Scholar 

  93. Neagu M, Bejan A. Constructal-theory tree networks of ‘constant’ thermal resistance. J Appl Phys, 1999, 86(2): 1136–1144

    Article  Google Scholar 

  94. Ghodoossi S, Egrican N. Inward constructal design for cooling of triangular shaped electronics. ECOS’03, June 30 2–July 2, 2003, Copenhagen, Denmark, 2003. 1169–1176

  95. Bejan A, Dan N. Two constructal routes to minimal heat flow resistance via greater internal complexity. Trans ASME, J Heat Transfer, 1999, 121(1): 6–14

    Article  Google Scholar 

  96. Ghodoossi L. Conceptual study on constructal theory. Energy Convers Mgmt, 2004, 45(9–10): 1379–1395

    Article  Google Scholar 

  97. Zhou S, Chen L, Sun F. Optimization of constructal volume-point conduction with variable cross-section conducting path. Energy Convers Mgmt, 2007, 48(1): 106–111

    Article  MathSciNet  Google Scholar 

  98. Almogbel M, Bejan A. Conduction trees with spacings at the tips. Int J Heat Mass Transfer, 1999, 42(20): 3739–3756

    Article  MATH  Google Scholar 

  99. Almogbel M, Bejan A. Constructal optimization of nonuniformly distributed tree-shaped flow structures for conduction. Int J Heat Mass Transfer, 2001, 44(22): 4185–4194

    Article  MATH  Google Scholar 

  100. Kalyon M, Sahin A Z. Application of optimal control theory in pipe insulation. Numerical Heat Transfer, Part A, 2002, 41(4): 391–402

    Article  Google Scholar 

  101. Lorente S, Bejan A. Combine ‘flow and strength’ geometry optimization: internal structure in a vertical insulating wall with air cavities and prescribed strength. Int J Heat Mass Transfer, 2002, 45(16): 3313–3320

    Article  MATH  Google Scholar 

  102. Pramanick A K, Das P K. Method of synthetic constraint, Fermat’s principle and the constructal law in the fundamental principle of conductive heat transport. Int J Heat Mass Transfer, 2007, 50(9/10): 1823–1832

    Article  MATH  Google Scholar 

  103. Lorente S, Wechsatol W, Bejan A. Optimization of tree-shaped flow distribution structures over a disc-shaped area. Int J Energy Res, 2003, 27(8): 715–723

    Article  Google Scholar 

  104. Rocha L A O, Lorente S, Bejan A. Conduction tree networks with loops for cooling a heat generating volume. Int J Heat Mass Transfer, 2006, 49(15/16): 2626–2635

    Article  MATH  Google Scholar 

  105. Lorente S, Wechsatol W, Bejan A. Tree-shaped flow structures design by minimizing path length. Int J Heat Mass Transfer, 2002, 45(16): 3299–3312

    Article  MATH  Google Scholar 

  106. Biserni C, Rocha L A O, Bejan A. Inverted fins: geometric optimization of the intrusion into a conducting wall. Int J Heat Mass Transfer, 2004, 47(12/13): 2577–2586

    Article  MATH  Google Scholar 

  107. Biserni C, Rocha L A O, Stanescu G, et al. Constructal H-shaped cavities according to Bejan’s theory. Int J Heat Mass Transfer, 2007, 50(11/12): 2132–2138

    Article  MATH  Google Scholar 

  108. Rocha L A O, Lorenzini E, Biserni C, et al. Geometric optimization of shapes on the basis of Bejan’s constructal theory. Int J Heat Mass Transfer, 2005, 32(10): 1281–1288

    Article  Google Scholar 

  109. Lorenzini G, Rocha L A O. Constructal design of Y-shaped assembly of fins. Int J Heat Transfer, 2006, 49(23/24): 4452–4457

    Google Scholar 

  110. Kacimov A R. Optimal design of fibers subject to steady heat conduction. Heat Mass Transfer, 2007, 43(4): 319–324

    Article  Google Scholar 

  111. Gosselin L, Bejan A. Constructal heat trees at micro and nanoscales. J Appl Phys, 2004, 96(10): 5852–5859

    Article  Google Scholar 

  112. Ghodoossi L. Entropy generation rate in uniform heat generating area cooled by conducting paths: criterion for rating the performance of constructal designs. Energy Convers Mgmt, 2004, 45(18): 2951–2969

    Article  Google Scholar 

  113. Vargas J V C, Bejan A, Siems D L. Integrative thermodynamic optimization of the crossflow heat exchanger for an aircraft environmental control system. Trans ASME, J Heat Transfer, 2001, 123(4): 760–769

    Article  Google Scholar 

  114. Vargas J V C, Bejan A. Integrative thermodynamic optimization of the environmental control system of and aircraft. Int J Heat Mass Transfer, 2001, 44(20): 3907–3917

    Article  MATH  Google Scholar 

  115. Zhou S, Chen L, Sun F. Entropy generation minimization for “volume-point” conduction based on constructal theory (in Chinese). J Thermal Sci Tech, 2007, 6: 294–299

    Google Scholar 

  116. Wei S, Chen L, Sun F. “Volume-point” heat conduction constructal optimization with entransy dissipation minimization objective based on rectangular element. Sci China Ser E-Tech Sci, 2008, 51(8): 1283–1295

    Article  MATH  Google Scholar 

  117. Wei S, Chen L, Sun F. Constructal entransy dissipation minimization for “volume-point” heat conduction without the premise of optimized last-order construct. Int J Exergy, 2010, 7(5): 627–639

    Article  Google Scholar 

  118. Wei S, Chen L, Sun F. Constructal entransy dissipation rate minimization of round tube heat exchanger cross-section. Int J Thermal Sciences, 2011, 50(7): 1285–1292

    Article  Google Scholar 

  119. Chen L, Wei S, Sun F. Constructal entransy dissipation rate minimization of a disc. Int J Heat Mass Transfer, 2011, 54(1–3): 210–216

    Article  MATH  Google Scholar 

  120. Wei S, Chen L, Sun F. Constructal entransy dissipation minimization for “volume-point” heat conduction based on triangular element. Thermal Sci, 2010, 14(4): 1075–1088

    Article  Google Scholar 

  121. Wei S, Chen L, Sun F. Constructal optimization of discrete and con tinuous-variable cross-section conducting path based on entransy dissipation rate minimization. Sci China Tech Sci, 2010, 53(6): 1666–1677

    Article  MATH  Google Scholar 

  122. Xie Z, Chen L, Sun F. Constructal optimization for geometry of cavity by taking entransy dissipation minimization as objective. Sci China Ser E-Tech Sci, 2009, 52(12): 3504–3513

    Article  MATH  Google Scholar 

  123. Xie Z, Chen L, Sun F. Constructal optimization on T-shaped cavity based on entransy dissipation minimization. Chin Sci Bull, 2009, 54(23): 4418–4427

    Article  Google Scholar 

  124. Xie Z, Chen L, Sun F. Geometry optimization of T-shaped cavities according to constructal theory. Math Comp Modell, 2010, 52(9–10): 1538–1546

    Article  Google Scholar 

  125. Xiao Q Chen L, Sun F. Constructal entransy dissipation rate minimization for “disc-to-point” heat conduction. Chin Sci Bull, 2011, 56(1): 102–112

    Article  Google Scholar 

  126. Xiao Q Chen L, Sun F. Constructal entransy dissipation rate minimization for heat conduction based on a tapered element. Chin Sci Bull, 2011, 56(22): 2400–2410

    Article  Google Scholar 

  127. Gersborg-Hansen A, Bendsoe M P, Sigmund O. Topology optimization of heat conduction problems using the finite volume method. Struct Multidisc Optim, 2006, 31: 251–259

    Article  MathSciNet  Google Scholar 

  128. Xia Z, Cheng X, Li Z et al. Bionic optimization of heat transport paths for heat conduction problems. J Enhanced Heat Transfer, 2004, 11(2): 119–131

    Article  Google Scholar 

  129. Cheng X, Li Z, Guo Z. Constructs of highly effective heat transport paths by bionic optimization. Sci China: Ser E-Tech Sci, 2003, 46(3): 296–302

    Article  Google Scholar 

  130. Mathieu-Potvin F, Gosselin L. Optimal conduction pathways for cooling a heat generating body: A comparison exercise. Int J Heat Mass Transfer, 2007, 50(15–16): 2996–3006

    Article  MATH  Google Scholar 

  131. Boichot R, Luo L. Heat transfer intensification using a cellular automation. Proc 5th Int Confer Heat Transfer, Fluid Mechanics, and Thermodyn, July 1–4, 2007, Sun City, South Africa

  132. Xu X, Liang X, Ren J. Optimization of heat conduction using combinatorial optimization algorithms. Int J Heat Mass Transfer, 2007, 50(9–10): 1675–1682

    Article  MATH  Google Scholar 

  133. Bejan A, Errera M R. Deterministic tree network for fluid flow: Geometry for minimal flow resistance between a volume and one point. Fractals, 1997, 5(4):685–695

    Article  MATH  Google Scholar 

  134. Bejan A. Constructal tree network for fluid flow between a finite-size volume and one source or sink. Rev Gen Therm, 1997, 36(8): 592–604

    Article  Google Scholar 

  135. Murray C D. The physiological principle of minimal work, in the vascular system, and the cost of blood-volume. Acad Nat Sci, 1926, 12(3): 207–214

    Article  Google Scholar 

  136. Wechsatol W, Ordonez J C, Kosaraju S. Constructal dendritic geometry and the existence of asymmetric bifurcation. J Appl Phys, 2006, 100(11): 113514

    Article  Google Scholar 

  137. Franco W, Sen M, Yang K T. Flows in large, self-similar tree networks and their control. Pro Royal Soc A, Math. Phys Eng Sci, 2006, 462(2074): 2907–2926

    Article  MathSciNet  MATH  Google Scholar 

  138. Durand M. Architecture of optimal transport networks. Phys Rev E, 2006, 73(1): 016116

    Article  MathSciNet  Google Scholar 

  139. Pramanick A K, Das P K. Note on constructal theory of organization in nature. Int J Heat Mass Transfer, 2005, 48(10): 1974–1981

    Article  MATH  Google Scholar 

  140. Bejan A, Rocha L A O, Lorente S. Thermodynamic optimization of geometry: T- and Y-shaped constructs of fluid streams. Int J Therm. Sci., 2000, 39(9): 949–960

    Article  Google Scholar 

  141. Wechsatol W, Lorente S, Bejan A. Tree-shaped flow structures with local junction losses. Int J Heat Mass, 2006, 49(17/18): 2957–2964

    Article  MATH  Google Scholar 

  142. Tondeur D, Luo L. Design and scaling laws of ramified fluid distributors by the constructal approach. Chem Eng Sci, 2004, 59(8–9): 1799–1813

    Google Scholar 

  143. Luo L, Tondeur K. Optimal distribution of viscous dissipation in a multi-scale branched fluid distributor. Int J Thermal Sci, 2005, 44(12): 1131–1141

    Article  Google Scholar 

  144. Luo L, Tondeur D, Gall H L, et al. Constructal approach and multi-scale components. Appl Therm Eng, 2007, 27(10): 1708–1714

    Article  Google Scholar 

  145. Luo L, Tondeur D. Multiscale optimization of flow distribution by constructal approach. China Particuology, 2005, 3(6): 329–336

    Article  Google Scholar 

  146. Lorente S, Wechsatol W, Bejan A. Tree-shaped flow structures design by minimizing path length. Int J Heat Mass Transfer, 2002, 45(16): 3299–3312

    Article  MATH  Google Scholar 

  147. Wechsatol W, Lorente S, Bejan A. Optimal tree-shaped networks for fluid flow in a disc-shaped body. Int J Heat Mass Transfer, 2002, 45(25): 4911–4924

    Article  MATH  Google Scholar 

  148. Lorente S, Wechsatol W, Bejan A. Optimization of tree-shaped flow distribution structures over a disc-shaped area. Int J Energy Res, 2003, 27(8): 715–723

    Article  Google Scholar 

  149. Bejan A, Lorente S. Equilibrium and nonequilibrium flow system architectures. Heat & Tech, 2004, 22(1): 85–92

    Google Scholar 

  150. Wechsatol W, Lorente S, Bejan A. Tree-shaped networks with loops. Int J Heat Mass Transfer, 2005, 48(3): 573–583

    Article  MATH  Google Scholar 

  151. Bejan A. Thermodynamic optimization of geometry in engineering flow systems. Exergy Int J, 2001, 1(4): 269–277

    Article  Google Scholar 

  152. Gosselin L, Bejan A. Tree networks for minimal pumping power. Int J Therm Sci, 2005, 44(1): 53–63

    Article  Google Scholar 

  153. Gosselin L. Optimization of tree-shaped fluid networks with size limitations. Int J Therm Sci, 2007, 46(5): 434–443

    Article  MathSciNet  Google Scholar 

  154. Bejan A. Optimal internal structure of volumes cooled by single-phase forced and natural convection. Trans ASME, J Electronic Packaging, 2003, 125(6): 200–207

    Article  Google Scholar 

  155. Joucaviel M, Gosselin L, Bello-Ochende T. Maximum heat transfer density with rotating cylinders aligned in cross-flow. Int J Heat Mass Transfer, 2008, 51(5/6): 1238–1250

    Google Scholar 

  156. Zimparov V D, da Silva A K, Bejan A. Thermodynamic optimization of tree-shaped flow geometries. Int J Heat Mass Transfer, 2006, 49(7): 1619–1630

    Article  MATH  Google Scholar 

  157. Zimparov V D, da Silva A K, Bejan A. Thermodynamic optimization of tree-shaped flow geometries with constant channel wall temperature. Int J Heat Mass Transfer, 2006, 49(25–26): 4839–4849

    Article  MATH  Google Scholar 

  158. Wechsatol W, Lorente S, Bejan A. Tree-shaped flow structures: are both thermal-resistance and flow-resistance minimizations necessary. Int J Exergy, 2004, 1(1): 2–17

    Article  Google Scholar 

  159. da Silva A K, Lorente S, Bejan A. Constructal multi-scale tree-shaped heat exchangers. J Appl Phys, 2004, 96(3): 1709–1718

    Article  Google Scholar 

  160. da Silva A K, Bejan A. Dendritic Counterflow heat exchanger experiments. Int J Therm Sci, 2006, 45(9), 860–869

    Article  Google Scholar 

  161. Zimparov V D, da Silva A K, Bejan A. Constructal tree-shaped parallel flow heat exchangers. Int J Heat Mass Transfer, 2006, 49(23/24): 4558–4566

    Article  MATH  Google Scholar 

  162. Bejan A, Fautrelle Y. Constructal multi-scale structure for maximal heat transfer density. Acta Mechanica, 2003, 163(1): 39–49

    MATH  Google Scholar 

  163. da Silva A K, Bejan A. Constructal multi-scale structure for maximal heat transfer density in natural convection. Int J Heat & Fluid Flow, 2005, 26(1): 34–44

    Article  Google Scholar 

  164. Bello-Ochende T, Bejan A. Maximal heat transfer density: Plates with multiple lengths in forced convection. Int J Therm Sci, 2004, 43(12): 1181–1186

    Article  Google Scholar 

  165. Bello-Ochende T, Bejan A. Constructal multi-scale cylinders in cross-flow. Int J Heat Mass Transfer, 2005, 48(7): 1373–1383

    Article  MATH  Google Scholar 

  166. Bello-Ochende T, Bejan A. Constructal multi-scale cylinders with natural convection. Int J Heat Mass Transfer, 2005, 48(21/22): 4300–4306

    Article  MATH  Google Scholar 

  167. Gosselin L. Fitting the flow regime in the internal structure of heat transfer systems. Int J Heat Mass Transfer, 2006, 33(1): 30–38

    Article  Google Scholar 

  168. Wechsatol W, Bejan A, Lorente S. Tree-shaped flow architectures: strategies for increasing optimization speed and accuracy. Numerical Heat Transfer, Part A, 2005, 48(8): 731–744

    Article  Google Scholar 

  169. Muzychka Y S. Constructal multi-scale design of compact micro-tube heat sinks and heat exchangers. Int J Therm Sci, 2007, 46(3): 245–252

    Article  Google Scholar 

  170. Bejan A, Dan N. Constructal trees of convective fins. Trans ASME, J Heat Transfer, 1999, 121(3): 675–682

    Article  Google Scholar 

  171. Bejan A, Almogbel M. Constructal T-shaped fins. Int J Heat Mass Transfer, 2000, 43(12): 2101–2115

    Article  MATH  Google Scholar 

  172. Alebrahim A, Bejan A. Constructal trees of circular fins for conductive and convective heat transfer. Int J Heat Mass Transfer, 1999, 42(19): 3585–3597

    Article  MATH  Google Scholar 

  173. Bobaru F, Rachakonda S. Optimal shape profiles for cooling fins of high and low conductivity. Int J Heat Mass Transfer, 2004, 47(23): 4953–4966

    Article  MATH  Google Scholar 

  174. Almogbel M. Constructal tree-shaped fins. Int J Therm Sci, 2005, 44(4): 342–348

    Article  Google Scholar 

  175. Lorenzini G, Moretti S. Numerical analysis on heat removal from Y-shaped fins: Efficiency and volume occupied for a new approach to performance optimization. Int J Therm Sci, 2007, 46(6): 573–579

    Article  Google Scholar 

  176. Lorenzini G, Moretti S. Numerical analysis of heat removal enhancement with extended surfaces. Int J Heat Mass Transfer, 2007, 50(3–4): 746–755

    Article  Google Scholar 

  177. Lorenzini G, Moretti S. A CFD application to optimize T-shaped fins: comparisons to the constructal theory’s results. Tans ASME, J Electronic Packaging, 2007, 129(3): 324–327

    Article  Google Scholar 

  178. Bonjour J, Rocha L A O, Bejan A et al. Dendritic fins optimization for a coaxial two-stream heat exchanger. Int J Heat Mass Transfer, 2003, 47(1): 111–124

    Article  Google Scholar 

  179. Xie Z, Chen L, Sun F. Constructal optimization of twice level Y-shaped assemblies of fins by taking maximum thermal resistance minimization as objective. Sci China Tech Sci, 2010, 53(10): 2756–2764

    Article  Google Scholar 

  180. Xie Z, Chen L, Sun F. Comparative study on constructal optimizations of T-shaped fin based on entransy dissipation rate minimization and maximum thermal resistance minimization. Sci China Tech Sci, 2011, 54(5): 1249–1258

    Article  Google Scholar 

  181. Xiao Q, Chen L, Sun F. Constructal entransy dissipation rate minimization for umbrella-shaped assembly of cylindrical fins. Sci China Tech Sci, 2011, 54(1): 211–219

    Article  MATH  Google Scholar 

  182. Xiao Q, Chen L, Sun F. Constructal entransy dissipation rate minimization for a heat generating volume cooled by forced convection. Chin Sci Bull, 2011, 56(27): 2966–2973

    Article  Google Scholar 

  183. Xiao Q, Chen L, Sun F. Constructal entransy dissipation rate and flow-resistance minimizations for cooling channels. Sci China Tech Sci, 2010, 53(9): 2458–2468

    Article  MATH  Google Scholar 

  184. Bejan A. Dendritic constructal heat exchanger with small-scale crossflows and larger-scales counterflows. Int J Heat Mass Transfer, 2002, 45(23): 4607–4620

    Article  MATH  Google Scholar 

  185. Matos R S, Vargas J V C, Laursen T A, et al. Optimally staggered finned circular and elliptic tubes in forced convection. Int J Heat Mass Transfer, 2004, 47(6): 1347–1359

    Article  MATH  Google Scholar 

  186. Matos R S, Laursen T A, Vargas J V C, et al. Three-dimensional optimization of staggered finned circular and elliptic tubes in forced convection. Int J Therm Sci, 2004, 43(5): 477–487

    Article  Google Scholar 

  187. Walsh E J, Grimes R. Constructal theory of the minimum requirements for forced convection cooling solutions. Proc 2005 ASME Summer Heat Transfer Confer, July 17–22, 2005, San Francisco, California, USA

  188. Raja V A P, Basak T, Das S K. Heat transfer and fluid flow in a constructal heat exchanger. Proceedings of 15th International Conference on Enhanced, Compact and Ultra-Compact Heat Exchangers: Science, Engineering and Technology, Whistler, Canada, Sept 11–16, 2005. 147–153

  189. da Silva A K, Lorente S, Bejan A. Optimal distribution of discrete heat sources on a plate with laminar convection. Int J Heat Mass Transfer, 2004, 47(10–11): 2139–3148

    Article  MATH  Google Scholar 

  190. da Silva A K, Lorente S, Bejan A. Constructal multi-scale structures with asymmetric heat sources of finite thickness. Int J Heat Mass Transfer, 2005, 48(13): 2662–2672

    Article  MATH  Google Scholar 

  191. da Silva A K, Lorente S, Bejan A. Optimal distribution of discrete heat sources on a wall with natural convention. Int J Heat Mass Transfer, 2004, 47(2): 203–214

    Article  MATH  Google Scholar 

  192. da Silva A K, Lorenzini G, Bejan A. Distribution of heat sources in vertical open channels with natural convection. Int J Heat Mass Transfer, 2005, 48(8): 1462–1469

    Article  MATH  Google Scholar 

  193. da Silva A K, Gosselin L. Optimal geometry of L and C-shaped channels for maximum heat transfer rate in natural convection. Int J Heat Mass Transfer, 2005, 48(3): 609–620

    Article  MATH  Google Scholar 

  194. da Silva A K, Gosselin L. Constructal peripheral cooling of a rectangular heat-generating area. Trans ASME, J Electronic Packaging, 2006, 128(4): 432–440

    Article  Google Scholar 

  195. Lorente S, Bejan A. Combine ‘flow and strength’ geometry optimization: internal structure in a vertical insulating wall with air cavities and prescribed strength. Int J Heat Mass Transfer, 2002, 45(16): 3313–3320

    Article  MATH  Google Scholar 

  196. Gosselin L, Bejan A, Lorente S. Combined ‘heat flow and strength’ optimization of geometry: mechanical structures most resistant to thermal attack. Int J Heat Mass Transfer, 2004, 47(14–16): 3477–3489

    Article  MATH  Google Scholar 

  197. Gosselin L, da Silva A K. Combined “heat transfer and power dissipation” optimization of nanofluid flows. Appl Phys Lett, 2004, 85(18): 4160–4162

    Article  Google Scholar 

  198. Gosselin L, Bejan A. Constructal thermal optimization of an electromagnet. Int J Therm Sci, 2004, 43(4):331–338

    Article  Google Scholar 

  199. Wei S, Chen L, Sun F. Constructal multidisciplinary optimization of electromagnet based on entransy dissipation minimization. Sci China Ser E-Tech Sci, 2009, 52(10): 2981–2989

    Article  MATH  Google Scholar 

  200. Wei S, Chen L, Sun F. Constructal complex-objective optimization of electromagnet based on magnetic induction and maximum temperature difference. Rev Mexi Fis, 2010, 56(3): 245–250

    Google Scholar 

  201. Xie Z, Chen L, Sun F. Constructal optimization of a vertical insulating wall based on a complex objective combining heat flow and strength. Sci China Tech Sci, 2010, 53(8): 2278–2290

    Article  MATH  Google Scholar 

  202. Chen L, Xie Z, Sun F. Multiobjective constructal optimization of an insulating wall combining heat flow, strength and weight. Int J Thermal Sci, 2011, 50(9): 1782–1789

    Article  Google Scholar 

  203. Wang K, Lorente S, Bejan A. Vascular structures for volumetric cooling and mechanical strength. J Appl Phys, 2010, 107(4): 044901

    Article  Google Scholar 

  204. Rocha L A O, Bejan A. Geometric optimization of periodic flow and heat transfer in a volume cooled by parallel tubes. Trans ASME, J Heat Transfer, 2001, 123(2): 233–239

    Article  Google Scholar 

  205. Nelson R A, Bejan A. Constructal optimization of internal flow geometry in convection. Trans ASME, J Heat Transfer, 1998, 120(2): 357–363

    Article  Google Scholar 

  206. Neagu M, Bejan A. Constructal placement of high-conductivity inserts in a slab: optimal design of roughness. Trans ASME, J Heat Transfer, 2001, 123(6): 1184–1189

    Article  Google Scholar 

  207. Bello-Ochende T, Bejan A. Fitting the duct to the “body” of the convective flow. Int J Heat Mass Transfer, 2003, 46(10): 1693–1701

    Article  MATH  Google Scholar 

  208. Cizmas P G A, Bejan A. Optimal placement of cooling flow tubes in a wall heated from the side. Int J Transfer Phnomena, 2001, 3(4): 331–343

    Google Scholar 

  209. Kalyon M, Sahin A Z. Application of optimal control theory in pipe insulation. Num Heat Transfer, Part A, 2002, 41(4): 391–402

    Article  Google Scholar 

  210. Zamfirescu C, Bejan A. Constructal tree-shaped two-phase flow for cooling a surface. Int J Heat Mass Transfer, 2003, 46(15): 2785–2797

    Article  MATH  Google Scholar 

  211. Zamfirescu C, Bejan A. Tree-shaped structures for cold storage. Int J Refr, 2005, 28(2): 231–241

    Article  Google Scholar 

  212. Wang X, Mujumdar A S, Yap C. Thermal characteristics of tree-shaped microchannel nets for cooling of a rectangular heat sink. Int J Therm Sci, 2006, 45(11): 1103–1112

    Article  Google Scholar 

  213. Wang X, Mujumdar A S, Yap C. Effect of bifurcation angle in tree-shaped microchannel networks. J Appl Phys, 2007, 102(7): 073530

    Article  Google Scholar 

  214. Wang X, Yap C, Mujumdar A S. Laminar heat transfer in constructal microchannel networks with loops. Trans ASME, J Electronic Packaging, 2006, 128(2): 273–280

    Article  Google Scholar 

  215. Muzychka Y S. Constructal design of force convection cooled microchannel heat sinks and heat exchangers. Int J Heat Mass Transfer, 2005, 48(21–22): 3119–3127

    Article  MATH  Google Scholar 

  216. Bello-Ochende T, Liebenberg L, Meyer J P. Constructal cooling channels for micro-channel heat sinks. Int J Heat Mass Transfer, 2007, 50(21–22): 4141–4150

    Article  MATH  Google Scholar 

  217. Moreno R M, Tao Y. Thermal and flow performance of a micro-convective heat sink with three-dimensional constructal channel configuration. Trans ASME, J Heat Transfer, 2006, 128(8): 740–751

    Article  Google Scholar 

  218. Luo L, Fan Y, Tondeur D. Heat exchanger: from micro- to multi-scale design optimization. Int J Energy Res, 2007, 31(13): 1266–1274

    Article  Google Scholar 

  219. Chen Y, Zheng P. An experimental investigation on a new type of fractal tree-like microchannel heat sink (in Chinese). J Engng Thermophys, 2006, 27(5): 853–855

    Google Scholar 

  220. Chen Y, Cheng P. An experimental investigation on the thermal efficiency of fractal tree-like microchannel nets. Int Comm Heat Mass Transfer, 2005, 32(7): 931–938

    Article  Google Scholar 

  221. Xu P, Yu B, Yun M, et al. Heat conduction in fractal tree-like branched networks. Int J Heat Mass Transfer, 2006, 49(19–20): 3746–3751

    Article  MATH  Google Scholar 

  222. Yu B, Li B. Fractal-like tree networks reducing the thermal conductivity. Phys Rev E, 2006, 73(6): 066302

    Article  MathSciNet  Google Scholar 

  223. Xu P, Yu B M, The scaling laws of transport properties for fractal-like tree networks. J Appl Phys, 2006, 100(10): 104906

    Article  Google Scholar 

  224. Xu P, Yu B, Feng Y, et al. Permeability of the fractal disk-shaped branched network with tortuosity effect. Phys Fluids, 2006, 18(7): 078103

    Article  Google Scholar 

  225. Xu P, Yu B, Feng Y, et al. Analysis of permeability for the fractal-like tree network by parallel and series models. Physica A, 2006, 369(2): 884–894

    Article  Google Scholar 

  226. Wang X, Yap C. Numerical analysis of blockage and optimization of heat transfer performance of fractal-like microchannel nets. Trans. ASME, J. Electronic Packaging, 2006, 128(1): 38–45.

    Article  Google Scholar 

  227. Chen J, Yu B, Xu P, et al. Fractal-like tree networks increasing the permeability. Phys Rev E, 2007, 75(5): 056301.

    Article  Google Scholar 

  228. Wang L. Next frontier in nanofluids research and development. Proc of 17th International Conference on Composites or Nano Engineering, Honolulu, July 26–Aug 1, 2009. 1085–1086

  229. Bai C, Wang L. Constructal design of particle volume fraction in nanofluids. Tans ASME J Heat Transfer, 2009, 131(11): 112402

    Article  Google Scholar 

  230. Bai C, Wang L. Constructal allocation of nanoparticles in nanofluids. Tans ASME, J Heat Transfer, 2010, 132(5): 052404

    Article  Google Scholar 

  231. Fan J, Wang L. Constructal design of nanofluids. Int J Heat Mass Transfer, 2010, 53(19/20): 4238–4247

    Article  MATH  Google Scholar 

  232. Bejan A. Designed porous media: maximal heat transfer density at decreasing length scales. Int J Heat Mass Transfer, 2004, 47(14): 3073–3083

    Article  MATH  Google Scholar 

  233. Ordonez J C, Bejan A, Cherry R S. Designed porous media: Optimally nonuniform flow structures connecting one point with more points. Int J Therm Sci, 2003, 42(9): 857–870

    Article  Google Scholar 

  234. Bejan A. Designed porous media: maximal heat transfer density at decreasing length scales. Int J Heat Mass Transfer, 2004, 47(14–16): 3073–3083

    Article  MATH  Google Scholar 

  235. Wildi-Tremblay P, Gosselin L. Layered porous media architecture for maximal cooling. Int J Heat Mass Transfer, 2007, 50(3/4): 464–478

    Article  MATH  Google Scholar 

  236. Leblond G, Gosselin L. Effect of non-local equilibrium on minimal thermal resistance porous layered systems. Int J Heat Fluid Flow, 2008, 29(1): 281–291

    Article  Google Scholar 

  237. Kacimov A R. Analytical solution and shape optimization for groundwater flow through a leaky porous trough subjacent to an aquifer. Proc R Soc A, 2006, 462(2069): 1409–1423

    Article  MathSciNet  MATH  Google Scholar 

  238. Lorente S. Constructal view of eclectrokinetic transfer through porous media. J Phys D: Appl Phys, 2007, 40(9): 2941–2947

    Article  Google Scholar 

  239. Lorente S, Bejan A. Heterogeneous porous media as Multiscale structures for maximum flow access. J Appl Phys, 2006, 100(11): 114909

    Article  Google Scholar 

  240. Azoumah Y, Mazet N, Neveu P. Constructal network for heat and mass transfer in a solid-gas reactive porous medium. Int J Heat Mass Transfer, 2004, 47(14): 2961–2970

    Article  MATH  Google Scholar 

  241. Azoumah Y, Neveu P, Mazet N. Constructal design combined with entropy generation minimization for solid-gas reactors. Int J Therm Sci, 2006, 45(7): 716–728

    Article  Google Scholar 

  242. Azoumah Y, Neveu P, Mazet N. Optimal design of thermochemical reactors based on constructal approach. AIChE J, 2007, 53(3): 1257–1266

    Article  Google Scholar 

  243. Zhou S, Chen L, Sun F. Constructal entropy generation minimization for heat and mass transfer in a solid-gas reactor based on triangular element. J Phys D: Appl Phys, 2007, 40(7): 3545–3550

    Article  Google Scholar 

  244. Morega A, Bejan A. A constructal approach to the optimal design of photovoltaic cells. Int J Green Energy, 2005, 2(3): 233–242

    Article  Google Scholar 

  245. Chen L, Zhou S, Sun F. Constructal minimization of emitter grid resistance for a solar cell with variable cross-section collectors. Indian J Pure Appl Phys, 2010, 48(8): 586–592

    Google Scholar 

  246. Bhakta A, Bandyopadhyay S. Constructal optimization of top contact metallization of a photovoltaic solar cell. Int J Thermodyn, 2005, 8(4): 175–181

    Google Scholar 

  247. Vargas J V C, Bejan A. Thermodynamic optimization of internal structure in a fuel cell. Int J Energy Res, 2004, 28(4): 319–339

    Article  Google Scholar 

  248. Vargas J V C, Ordonez J C, Bejan A. Constructal flow structure for a PEM fuel cell. Int J Heat Mass Transfer, 2004, 47(19/20): 4177–4193

    Article  Google Scholar 

  249. Vargas J V C, Ordonez J C, Bejan A. Constructal PEM fuel cell stack design. Int J Heat Mass Transfer, 2005, 48(21/22): 4410–4427

    Article  MATH  Google Scholar 

  250. Ordonez J C, Chen S, Vargas J V C, et al. Constructal flow structure for a single SOFC. Int J Energy Res, 2007, 31(14): 1337–1357

    Article  Google Scholar 

  251. Senn S M, Poulikakos D. Polymer electrolyte fuel cells with porous materials as fluid distributors and comparisons with traditional channeled systems. Trans ASME, J Heat Transfer, 2004, 126(3): 410–418

    Article  Google Scholar 

  252. Senn S M, Poulikakos D. Tree network channels as fluid distributors constructing double-staircase polymer electrolyte fuel cells. J Appl Phys, 2004, 96(1): 842–852

    Article  Google Scholar 

  253. Senn S M, Poulikakos D. Laminar mixing, heat transfer and pressure drop in tree-like microchannel nets and their application for thermal management in polymer electrolyte fuel cells. J Power Sources, 2004, 130(1/2): 178–191

    Article  Google Scholar 

  254. Senn S M, Poulikakos D. Multistage polymer electrolyte fuel cells based on nonuniform cell potential distribution functions. Electrochem Comm, 2005, 7(7): 773–780

    Article  Google Scholar 

  255. Chen S, Ordonez J C, Vargas J V C. Transient operation and shape optimization of a single PEM fuel cell. J Power Sources, 2006, 162(1): 356–368

    Article  Google Scholar 

  256. Bejan A, Badescu V, De Vos A. Constructal theory of economics. Appl Energy, 2000, 67(1): 37–60

    Article  Google Scholar 

  257. Ghodoossi S, Egrican N. Flow area structure generation in point to area or area to point flows. Energy Convers Mgmt, 2003, 44(16): 2609–2623

    Article  Google Scholar 

  258. Ghodoossi S, Egrican N. Flow area optimization in point to area or area to point flows. Energy Convers Mgmt, 2003, 44(16): 2589–2608

    Article  Google Scholar 

  259. Zhou S, Chen L, Sun F. Optimization of constructal economics for volume to point transport. Appl Energy, 2007, 84(5): 505–511

    Article  Google Scholar 

  260. Allen J K, Rosen D W, Mistree F. An approach to designing sustainable enterprise systems. Engineering Systems Symposium, Cambridge: Cambridge University, Mar 31, 2004

    Google Scholar 

  261. Carone M J, Williams C B, Allen J, et al. An application of constructal theory in the multi-objective design of product platforms. Pro ASME 2003 Design Engineering Technical Conferences and Computer and Information in Engineering Conference, Chicago, Illinois, Sept 2–6, 2003

  262. Hernandez G, Allen J K, Mistree F. Platform design for customizable products as a problem of access in a geometric space. Eng Opt, 2003, 35(3): 229–254

    Article  Google Scholar 

  263. Williams C B, Allen J K, Mistree F. Platform design for customizable products and production processes as a problem of access in a geometric space. NSF Design, Service and Manufacturing Grantees and Research Conference, SMU — Dalla, Texas, Jan 9, 2004

  264. Williams C B, Allen J K, Rosen D W, et al. Designing platforms for customizable products in markets with non-uniform demand. Proceedings of ASME 2004 Design Engineering Technical Conferences and Computer and Information in Engineering Conference, Salt Lake City, Utah, Sept 28–Oct 2, 2004

  265. Lorente S, Wechsatol W, Bejan A. Fundamental of tree-shaped networks of insulated pipes for hot water and exergy. ECOS’01, Istan bul, July 4–6, 2001. 59–68

  266. Wechsatol W, Lorente S Bejan A. Tree-shaped insulated designs for the uniform distribution of hot water over an area. Int Heat Mass Transfer, 2001, 44(16): 3111–3123

    Article  MATH  Google Scholar 

  267. Wechsatol W, Lorente S, Bejan A. Development of tree-shaped flows by adding new users to existing networks of hot water pipes. Int J Heat Mass Transfer, 2002, 45(4): 723–733

    Article  MATH  Google Scholar 

  268. Lorente S, Wechsatol W, Bejan A. Tree-shaped flow structures for human-scale and small-scales applications. Heat & Tech, 2004, 22(1): 15–25

    Google Scholar 

  269. Miguel A F. Constructal design of solar energy-based systems for buildings. Energy & Building, 2008, 40(6): 1020–1030

    Article  Google Scholar 

  270. Lewins J. Bejan’s constructal theory of equal potential distribution. Int J Heat Mass Transfer, 2003, 46(9): 1541–1542

    Article  MATH  Google Scholar 

  271. Arion V, Cojocari A, Bejan A. Constructal tree shaped networks for distribution of electrical power. Energy Convers Mgmt, 2003, 44(6): 867–891

    Article  Google Scholar 

  272. Arion V, Cojocari A, Bejan A. Integral measure of electric power distribution networks: load-length curves and line-network multipliers. Engng Convers Mgmt, 2003, 44(7): 1039–1051

    Article  Google Scholar 

  273. Bohn S, Magnasco M O. Structure, scaling, and phase transition in the optimal transport network. Phys Rev Lett, 2007, 98(8): 088702

    Article  Google Scholar 

  274. Durand M. Structure of optimal transport networks subject to a global constraint. Phys Rev Lett, 2007, 98(8): 088701

    Article  Google Scholar 

  275. Bejan A, Ledezma G A. Streets tree networks and urban growth: Optimal geometry for quickest access between a finite-size volume and one point. Physica A, 1998, 255(1): 211–217

    Article  Google Scholar 

  276. Reis A H. Constructal view of the scaling laws of street networks-the dynamics behind geometry. Physica A, 2008, 387(2/3): 617–622

    Article  MathSciNet  Google Scholar 

  277. Bejan A. Constructal Theory: Tree-shaped flows and energy systems for aircraft. Tans AIAA, J Aircraft, 2003, 40(1): 43–48

    Article  Google Scholar 

  278. Bejan A. The tree of convective heat streams: its thermal insulation function and the predicted 3/4-power relation between body heat loss and body heat loss and body size. Int J Heat Mass Transfer, 2001, 44(9): 699–704

    Article  MATH  Google Scholar 

  279. Bejan A. Theory of organization in nature: pulsating physiological processes. Int J Heat Mass Transfer, 1997, 40(9): 2097–2104

    Article  MATH  Google Scholar 

  280. Reis A H, Miguel A F. Constructal theory of flow architecture of the lungs. Medical Phys, 2004, 31(5): 1135–1140

    Article  Google Scholar 

  281. Reis A H, Miguel A F. Constructal theory and flow architectures in living systems. Therm Sci, 2006, 10(1): 57–64

    Article  Google Scholar 

  282. Wang K M, Lorente S, Bejan A. Vascularized networks with two optimized channel sizes. J Phys D: Appl Phys, 2006, 39(14): 3086–3096

    Article  Google Scholar 

  283. Dai W, Bejan A, Tang X, et al. Optimal temperature distribution in a three dimensional triple-layered skin structure with embedded vasculature. J Appl Phys, 2006, 99(10): 104702

    Article  Google Scholar 

  284. Tang X, Dai W, Nassar R et al. Optimal temperature distribution in a three-dimensional triple-layered skin structure embedded with artery and vein vasculature. Num Heat Transfer, Part A, 2006, 50(9): 809–834

    Article  Google Scholar 

  285. Wang H, Dai W, Bejan A. Optimal temperature distribution in a 3D triple-layered skin structure embedded with artery and vein vasculature and induced by electromagnetic radiation. Int J Heat Mass Transfer, 2007, 50(9/10): 1843–1854

    Article  MATH  Google Scholar 

  286. Kim S, Lorente S, Bejan. Vascularized materials with heating from one side and coolant forced from the other side. Int J Heat Mass Transfer, 2007, 50(17/18): 3498–3506

    Article  MATH  Google Scholar 

  287. Reis A H. constructal view of scaling laws of river basins. Geomorphology, 2006, 78(3/4): 201–206

    Article  Google Scholar 

  288. Horton R E. Drainage basin characteristics. Trans Am Geophys Union, 1932, 13: 350–361

    Google Scholar 

  289. Hack J T. Studies of Longitudinal Profiles in Virginia and Maryland. Washington D C: USGS Professional Papers 294-B, 1957

    Google Scholar 

  290. Huang H, Nanson G C. Hydraulic geometry and maximum flow efficiency as products of the principle of least action. Earth Surf Process Landf, 2000, 25: 1–16

    Article  Google Scholar 

  291. Bejan A, Reis A H. Thermodynamic optimization of global circulation and climate. Int J Energy Res, 2005, 29(4): 303–316

    Article  Google Scholar 

  292. Reis A H, Bejan A. Constructal theory of global circulation and climate. Int J Heat Mass Transfer, 2006, 49(11/12): 1857–1875

    Article  MATH  Google Scholar 

  293. Mauroy B, Filoche M, Weibel E R, et al. An optimal bronchial tree may be dangerous. Nature, 2004, 427(6975): 633–636

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LinGen Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L. Progress in study on constructal theory and its applications. Sci. China Technol. Sci. 55, 802–820 (2012). https://doi.org/10.1007/s11431-011-4701-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-011-4701-9

Keywords

Navigation