Skip to main content
Log in

Natural convection of nanoliquid from elliptic cylinder in wavy enclosure under the effect of uniform magnetic field: numerical investigation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In the current article, a three-dimensional numerical simulation is conducted to scrutinize the steady laminar natural convective flow and transfer of heat between a cold wavy porous enclosure and a hot elliptic cylinder. Alumina nanoparticles are dispersed in the water to enhance the heat exchange process. The nanofluid flow is taken as laminar and incompressible, while the advection inertia effect in the porous layer is taken into account by adopting the Darcy–Forchheimer model. The problem is explained in the dimensionless form of the governing equations and solved by the finite element method. The influences of different governing parameters such as nanoparticles volume fraction (ϕ), angle of rotation (α), Darcy number (Da), Hartmann number (Ha), and Rayleigh number (Ra) on the fluid flow, temperature (T) filed and average Nusselt number are presented. The results exhibit that the heat transfer is enhanced when either of Ra, Da and ϕ is raised. The permeability increment achieved a 12.73% enhancement in the heat transfer rate. Also, when \(\mathrm{Ha}\) is altered from 0 to 100, a reduction in values of the Nusselt number is given up to 22.22%. Furthermore, the optimal inclination angle for the convective process is α = 45°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

Cp:

Heat capacitance (J kg −1 °C −1)

B :

Magnetic induction

Da:

Darcy number

K :

Permeability (m2)

k :

Thermal conductivity (W m−1 K−1)

k eff :

Effective thermal conductivity (W m−1 K−1)

Nu:

Nusselt number

P :

Dimensionless pressure

p :

Pressure (Pa)

Pr:

Prandtl number

Ra:

Rayleigh number

T :

Temperature (K)

u, v, w :

Nondimensional velocity components

U, V, W :

Dimensionless velocity magnitude

N :

Undulation number

φ :

Solid volume fraction

α :

Heat diffusion coefficient (m2 s−1)

β :

Thermal diffusion coefficient (k−1)

ε :

Porosity

μ :

Dynamic viscosity (kg m−1 s−1)

μ eff :

Effective dynamic viscosity (kg m−1 s−1)

ν :

Kinematic viscosity (m2 s−1)

ρ :

Fluid density (kg m−3)

θ :

Nondimensional temperature

c :

Cold

eff:

Effective

f :

Fluid

h :

Hot

s :

Solid

hnf:

Hybrid nanofluid

References

  1. W. Al-Kouz, A. Al-Muhtady, W. Owhaib, S. Al-Dahidi, M. Hader, and R. Abu-Alghanam, Entropy generation optimization for rarified nanofluid flows in a square cavity with two fins at the hot wall. Entropy 21(2) (2019)

  2. Z. Abdel-Nour, A. Aissa, F. Mebarek-Oudina, A.M. Rashad, H.M. Ali, M. Sahnoun, M. El Ganaoui, Magnetohydrodynamic natural convection of hybrid nanofluid in a porous enclosure: numerical analysis of the entropy generation. J. Therm. Anal. Calorim. 141(5), 1981–1992 (2020)

    Article  Google Scholar 

  3. F. Mebarek-oudina, A. Aissa, B. Mahanthesh, and H. F. Öztop, Heat transport of magnetized Newtonian nanoliquids in an annular space between porous vertical cylinders with discrete heat source. 117 (2020)

  4. S. Marzougui, F. Mebarek, O. A. Assia, and Z. S. K. Ramesh, Entropy generation on magneto ‑ convective flow of copper – water nanofluid in a cavity with chamfers. J. Therm. Anal. Calorim. (2020)

  5. L. Benos, I.E. Sarris, Analytical study of the magnetohydrodynamic natural convection of a nanofluid filled horizontal shallow cavity with internal heat generation. Int. J. Heat Mass Transf. 130, 862–873 (2019)

    Article  Google Scholar 

  6. L.T. Benos, N.D. Polychronopoulos, U.S. Mahabaleshwar, G. Lorenzini, I.E. Sarris, Thermal and flow investigation of MHD natural convection in a nanofluid-saturated porous enclosure: an asymptotic analysis. J. Therm. Anal. Calorim. 143(1), 751–765 (2021)

    Article  Google Scholar 

  7. L.T. Benos, E.G. Karvelas, I.E. Sarris, A theoretical model for the magnetohydrodynamic natural convection of a CNT-water nanofluid incorporating a renovated Hamilton–Crosser model. Int. J. Heat Mass Transf. 135, 548–560 (2019)

    Article  Google Scholar 

  8. L.T. Benos, I.E. Sarris, The interfacial nanolayer role on magnetohydrodynamic natural convection of an Al2O3-water nanofluid. Heat Transf. Eng. 42(2), 89–105 (2021)

    Article  ADS  Google Scholar 

  9. A. Abdulkadhim, H.K. Hamzah, F.H. Ali, A.M. Abed, I.M. Abed, Natural convection among inner corrugated cylinders inside wavy enclosure filled with nanofluid superposed in porous–nanofluid layers. Int. Commun. Heat Mass Transf. 109(October), 104–350 (2019)

    Google Scholar 

  10. F. Selimefendigil and H. F. Öztop, Control of natural convection in a CNT-water nanofluid filled 3D cavity by using an inner T-shaped obstacle and thermoelectric cooler. Int. J. Mech. Sci., 169(July) (2019)

  11. H. Sajjadi, A.A. Delouei, M. Atashafrooz, M. Sheikholeslami, Double MRT Lattice Boltzmann simulation of 3-D MHD natural convection in a cubic cavity with sinusoidal temperature distribution utilizing nanofluid. Int. J. Heat Mass Transf. 126, 489–503 (2018)

    Article  Google Scholar 

  12. A.A.A.A. Al-Rashed, L. Kolsi, H.F. Oztop, A. Aydi, E.H. Malekshah, N. Abu-Hamdeh, M.N. Borjini, 3D magneto-convective heat transfer in CNT-nanofluid filled cavity under partially active magnetic field. Phys. E Low-Dimens. Syst. Nanostruct. 99(2017), 294–303 (2018)

    Article  ADS  Google Scholar 

  13. L. Kolsi et al., Numerical investigation of combined buoyancy-thermocapillary convection and entropy generation in 3D cavity filled with Al2O3 nanofluid. Alex. Eng. J. 56(1), 71–79 (2017)

    Article  Google Scholar 

  14. A.A.A.A. Al-Rashed, L. Kolsi, K. Kalidasan, E.H. Malekshah, M.N. Borjini, P.R. Kanna, Second law analysis of natural convection in a CNT-water nanofluid filled inclined 3D cavity with incorporated Ahmed body. Int. J. Mech. Sci. 130(May), 399–415 (2017)

    Article  Google Scholar 

  15. M.K. Nayak, N.S. Akbar, V.S. Pandey, Z.H. Khan, D. Tripathi, 3D free convective MHD flow of nanofluid over permeable linear stretching sheet with thermal radiation. Powder Technol. 315, 205–215 (2017)

    Article  Google Scholar 

  16. A.A.A.A. Al-Rashed, K. Kalidasan, L. Kolsi, A. Aydi, E.H. Malekshah, A.K. Hussein, P. Rajesh Kanna, Three-dimensional investigation of the effects of external magnetic field inclination on laminar natural convection heat transfer in CNT–water nanofluid filled cavity. J. Mol. Liq. 252, 454–468 (2018)

    Article  Google Scholar 

  17. C. Qi, J. Tang, Z. Ding, Y. Yan, L. Guo, and Y. Ma, Effects of rotation angle and metal foam on natural convection of nanofluids in a cavity under an adjustable magnetic field. Int. Commun. Heat Mass Transf. 109(November) (2019)

  18. L. Kolsi, H.F. Oztop, K. Ghachem, M.A. Almeshaal, H.A. Mohammed, H. Babazadeh, N. Abu-Hamdeh, Numerical study of periodic magnetic field effect on 3D natural convection of MWCNT-water/nanofluid with consideration of aggregation. Processes 7(12) (2019)

  19. S. Chikh, A. Boumedien, K. Bouhadef, G. Lauriat, Analytical solution of non-Darcian forced convection in an annular duct partially filled with a porous medium. Int. J. Heat Mass Transf. 38(9), 1543–1551 (1995)

    Article  Google Scholar 

  20. M.A. Sheremet, S. Dinarvand, I. Pop, Effect of thermal stratification on free convection in a square porous cavity filled with a nanofluid using Tiwari and Das’ nanofluid model. Phys. E Low-Dimens. Syst. Nanostruct. 69, 332–341 (2015)

    Article  ADS  Google Scholar 

  21. A.J. Chamkha, M.A. Ismael, Natural Convection in Differentially Heated Partially Porous Layered Cavities Filled with a Nanofluid. Numer. Heat Transf. Part A Appl. 65(11), 1089–1113 (2014)

    Article  ADS  Google Scholar 

  22. R. Akhter, M.M. Ali, M.A. Alim, Hydromagnetic natural convection heat transfer in a partially heated enclosure filled with porous medium saturated by nanofluid. Int. J. Appl. Comput. Math. 5(3), 1–27 (2019)

    Article  MathSciNet  Google Scholar 

  23. S.A. Shehzad, M. Sheikholeslami, T. Ambreen, A. Shafee, H. Babazadeh, M. Ahmad, Heat transfer management of hybrid nanofluid including radiation and magnetic source terms within a porous domain. Appl. Nanosci. 10(12), 5351–5359 (2020)

    Article  ADS  Google Scholar 

  24. A. Alshare, W. Al-Kouz, A. Alkhalidi, S. Kiwan, and A. Chamkha, Periodically fully developed nanofluid transport through a wavy module. J. Therm. Anal. Calorim. (2020)

  25. A. Alshare, W. Al-Kouz, and W. Khan, Cu-Al2O3 water hybrid nanofluid transport in a periodic structure. Processes 8(3)( 2020)

  26. W. Al-Kouz, A. Al-Muhtady, W. Owhaib, S. Al-Dahidi, M. Hader, R. Abu-Alghanam, Entropy generation optimization for rarified nanofluid flows in a square cavity with two fins at the hot wall. Entropy 21(2), 103 (2019)

    Article  ADS  Google Scholar 

  27. M. Hader, W. Al-Kouz, Performance of a hybrid photovoltaic/thermal system utilizing water–Al2O3 nanofluid and fins. Int. J. Energy Res. 43(1), 219–230 (2019)

    Article  Google Scholar 

  28. A. A. Wael Al-Kouz, Suhil Kiwan, Ammar Alkhalidi, Ma’en Sari, Numerical study of heat transfer enhancement for low-pressure flows in a square cavity with two fins attached to the hot wall using Al2O3-air nanofluid. Strojniški Vestn. J. Mech. Eng. 64(1) (2018)

  29. C.H. Li, G.P. Peterson, Experimental studies of natural convection heat transfer of Al2O3/DI water nanoparticle suspensions (nanofluids). Adv. Mech. Eng. 2, 742739 (2010)

    Article  Google Scholar 

  30. S.Z. Heris, M.B. Pour, O. Mahian, S. Wongwises, A comparative experimental study on the natural convection heat transfer of different metal oxide nanopowders suspended in turbine oil inside an inclined cavity. Int. J. Heat Mass Transf. 73, 231–238 (2014)

    Article  Google Scholar 

  31. H. Kargarsharifabad, Experimental and numerical study of natural convection of Cu-water nanofluid in a cubic enclosure under constant and alternating magnetic fields. Int. Commun. Heat Mass Transf. 119, 104957 (2020)

    Article  Google Scholar 

  32. M. Torki, N. Etesami, Experimental investigation of natural convection heat transfer of SiO2/water nanofluid inside inclined enclosure. J. Therm. Anal. Calorim. 139(2), 1565–1574 (2020)

    Article  Google Scholar 

  33. R. Yousofvand, S. Derakhshan, K. Ghasemi, M. Siavashi, MHD transverse mixed convection and entropy generation study of electromagnetic pump including a nanofluid using 3D LBM simulation. Int. J. Mech. Sci. 133, 73–90 (2017)

    Article  Google Scholar 

  34. A.A.A.A. Al-Rashed, K. Kalidasan, L. Kolsi, R. Velkennedy, A. Aydi, A.K. Hussein, E.H. Malekshah, Mixed convection and entropy generation in a nanofluid filled cubical open cavity with a central isothermal block. Int. J. Mech. Sci. 135, 362–375 (2018)

    Article  Google Scholar 

  35. A.K. Kareem, S. Gao, Computational study of unsteady mixed convection heat transfer of nanofluids in a 3D closed lid-driven cavity. Int. Commun. Heat Mass Transf. 82, 125–138 (2017)

    Article  Google Scholar 

  36. F. Selimefendigil, H.F. Öztop, Combined effects of double rotating cones and magnetic field on the mixed convection of nanofluid in a porous 3D U-bend. Int. Commun. Heat Mass Transf. 116, 104703 (2020)

    Article  Google Scholar 

  37. M. Izadi, S.M.R. Hashemi Pour, A. Karimdoost Yasuri, A.J. Chamkha, Mixed convection of a nanofluid in a three-dimensional channel: Effect of opposed buoyancy force on hydrodynamic parameters, thermal parameters and entropy generation. J. Therm. Anal. Calorim. 136(6), 2461–2475 (2019)

    Article  Google Scholar 

  38. A.J. Chamkha, F. Selimefendigil, and H.F. Oztop, Effects of a rotating cone on the mixed convection in a double lid-driven 3D porous trapezoidal nanofluid filled cavity under the impact of magnetic field. Nanomater. (Basel, Switzerland) 10(3) (2020)

  39. K. Ghasemi, M. Siavashi, Three-dimensional analysis of magnetohydrodynamic transverse mixed convection of nanofluid inside a lid-driven enclosure using MRT-LBM. Int. J. Mech. Sci. 165, 105199 (2020)

    Article  Google Scholar 

  40. F. Selimefendigil, H.F. Öztop, A.J. Chamkha, Analysis of mixed convection of nanofluid in a 3D lid-driven trapezoidal cavity with flexible side surfaces and inner cylinder. Int. Commun. Heat Mass Transf. 87, 40–51 (2017)

    Article  Google Scholar 

  41. Z. Zeng, R. Grigg, A criterion for non-darcy flow in porous media. Transp. Porous Media 63(1), 57–69 (2006)

    Article  Google Scholar 

  42. Q.W. Wang, J. Yang, M. Zeng, G. Wang, Three-dimensional numerical study of natural convection in an inclined porous cavity with time sinusoidal oscillating boundary conditions. Int. J. Heat Fluid Flow 31(1), 70–82 (2010)

    Article  Google Scholar 

  43. O.C. Taylor, R.L. Zienkiewicz and Z.J. Zhu, Finite Element Method for Solid and Structural Mechanics. 1, pp 6–8 (2005)

  44. C. Taylor, P. Hood, A numerical solution of the Navier–Stokes equations using the finite element technique. Comput. Fluids 1(1), 73–100 (1973)

    Article  MathSciNet  Google Scholar 

  45. M. Fahs, T. Graf, T.V. Tran, B. Ataie-Ashtiani, C.T. Simmons, A. Younes, Study of the effect of thermal dispersion on internal natural convection in porous media using fourier series. Transp. Porous Media 131(2), 537–568 (2020)

    Article  MathSciNet  Google Scholar 

  46. K. Khanafer, A. Alamiri, J. Bull, Laminar natural convection heat transfer in a differentially heated cavity with a thin porous fin attached to the hot wall. Int. J. Heat Mass Transf. 87, 59–70 (2015)

    Article  Google Scholar 

  47. O. Aydın, I. Pop, Natural convection in a differentially heated enclosure filled with a micropolar fluid. Int. J. Therm. Sci. 46, 963–969 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weal. Al-Kouz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mourad, A., Aissa, A., Mebarek-Oudina, F. et al. Natural convection of nanoliquid from elliptic cylinder in wavy enclosure under the effect of uniform magnetic field: numerical investigation. Eur. Phys. J. Plus 136, 429 (2021). https://doi.org/10.1140/epjp/s13360-021-01432-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01432-w

Navigation