Skip to main content
Log in

Thermal and flow investigation of MHD natural convection in a nanofluid-saturated porous enclosure: an asymptotic analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present investigation, asymptotic solutions are obtained regarding the laminar natural convection of a nanofluid in a porous enclosure subject to internal heating and magnetic field, which appears in a plethora of industrial and bioengineering applications. The complicated nature of the nanofluids along with the computational time needed for the magnetohydrodynamic numerical simulations makes this problem too difficult to face with. Hence, the innovation of this study relies on providing a first-principles approach that includes three kinds of widely utilized nanoparticles (Cu, Al2O3 and TiO2) dispersed in aqueous suspension by incorporating a unified way for describing the nanofluid thermal conductivity and viscosity. In addition, the effect of the magnetic field, internal heating, porous medium permeability as well as nanoparticle size and volume fraction is examined via the derived analytical relationships. In brief, the current study suggests that the increase in the magnetic field intensity and the decrease in the medium permeability tend to suppress the nanofluid flow, thus resulting in deterioration of the heat transfer. This deterioration also occurs when the nanofluid becomes denser and the nanoparticles enlarge. Conversely, increasing the internal heating reinforces the convective currents in favor of cooling process. Finally, the present asymptotic solutions are expected to be very useful in various scientific fields given the rapidly growing interest in nanofluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

B 0 :

Magnitude of the external magnetic field

C p :

Specific heat under constant pressure

Da:

Darcy number

d f :

Equivalent water diameter

d p :

Nanoparticle diameter

g :

Gravity acceleration

h :

Cavity height

Ha:

Hartmann number

k :

Thermal conductivity

L :

Cavity aspect ratio (width/height)

P :

Pressure

Pr:

Prandtl number

Q :

Volumetric heating rate

Ra:

Rayleigh number

Rep :

Reynolds number appearing in relative thermal conductivity

Rs:

Scaled Rayleigh number

T :

Nanofluid temperature

Τ f :

Freezing temperature of water

u, w :

x-, z-velocity components, respectively

V E :

Electrostatic potential

x, z :

Spatial coordinates

G, y m,o, a m :

Functions appeared in asymptotic solutions

a m,HD :

The hydrodynamic limits for am,

y m,HD :

ym, respectively

α :

Thermal diffusivity

β :

Volumetric expansion coefficient

θ 0 :

Analytical core nanofluid temperature

Κ :

Permeability

Θ, Ψ, Χ, Ζ :

Dimensionless temperature, stream function and spatial coordinates, respectively

μ :

Dynamic viscosity

ν :

Kinematic viscosity

ξ :

Scaled horizontal coordinate

ρ :

Density

σ :

Electrical conductivity

φ :

Nanoparticle volume fraction

ψ :

Stream function

ψ 0 :

Core stream function

ψ i :

Stream function of order Li

av:

Average

f:

Fluid

nf:

Nanofluid

References

  1. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Mater Sci. 1995;231:99–105.

    CAS  Google Scholar 

  2. Sheikholeslami M, Jafaryar M, Shafee A, Li Z. Nanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticles. J Therm Anal Calorim. 2018;134(3):2295–303.

    Article  CAS  Google Scholar 

  3. Sheikholeslami M, Shehzad SA, Li Z, Shafee A, Abbasi FM. Time dependent conduction heat transfer during solidification in a storage system using nanoparticles. J Therm Anal Calorim. 2019;26(6):2153–69.

    Google Scholar 

  4. Farshad SA, Sheikholeslami M. Simulation of exergy loss of nanomaterial through a solar heat exchanger with insertion of multi-channel twisted tape. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08156-1.

    Article  Google Scholar 

  5. Karvelas E, Liosis C, Benos L, Karakasidis T, Sarris I. Micromixing efficiency of particles in heavy metal removal processes under various inlet conditions. Water. 2019;11(6):1135. https://doi.org/10.3390/w11061135.

    Article  CAS  Google Scholar 

  6. Benos L, Spyrou LA, Sarris IE. Development of a new theoretical model for blood-CNTs effective thermal conductivity pertaining to hyperthermia therapy of glioblastoma multiform. Comput Prog Biomed. 2019;172:79–85.

    Article  CAS  Google Scholar 

  7. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Taylor RA, Abu-Nada E, Rashidi S, Niazmand H, Wongwises S, Hayat T, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-Part II: applications. Phys Rep. 2019;791:1–59.

    Article  CAS  Google Scholar 

  8. Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems: a review. J Therm Anal Calorim. 2018;131(3):2027–39.

    Article  CAS  Google Scholar 

  9. Pelekasis N, Benos L. Static arrangement of a capillary porous system (CPS): modelling. Fusion Eng Des. 2017;117:180–7.

    Article  CAS  Google Scholar 

  10. Nield DA, Bejan A. Convection in porous media. 3rd ed. New York: Springer; 2006.

    Google Scholar 

  11. Kasaeian A, Azarian RD, Mahian O, Kolsi L, Chamkha AJ, Wongwises S, Pop I. Nanofluid flow and heat transfer in porous media: a review of the latest developments. Int J Heat Mass Transf. 2017;107:778–91.

    Article  CAS  Google Scholar 

  12. Menni Y, Chamkha A, Azzi A. Nanofluid transport in porous media: a review, special topics and reviews in porous media. Int J. 2019;10(1):49–64.

    Google Scholar 

  13. Mahdi RA, Mohammed HA, Munisamy KM, Saeid NH. Review of convection heat transfer and fluid flow in porous media with nanofluid. Renew Sust Energy Rev. 2015;41:715–34.

    Article  CAS  Google Scholar 

  14. Abedini A, Armaghani T, Chamkha AJ. MHD free convection heat transfer of a water–Fe3O4 nanofluid in a baffled C-shaped enclosure. J Therm Anal Calorim. 2019;135(1):685–95.

    Article  CAS  Google Scholar 

  15. Vo DD, Hedayat M, Ambreen T, Shehzad SA, Sheikholeslami M, Shafee A, Nguyen TK. Effectiveness of various shapes of Al2O3 nanoparticles on the MHD convective heat transportation in porous medium. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08501-4.

    Article  Google Scholar 

  16. Sheikholeslami M, Sajjadi H, Delouei AA, Atashafrooz M, Li Z. Magnetic force and radiation influences on nanofluid transportation through a permeable media considering Al2O3 nanoparticles. J Therm Anal Calorim. 2019;136(6):2477–85.

    Article  CAS  Google Scholar 

  17. Grosan T, Revnic C, Pop I, Ingham DB. Magnetic field and internal heat generation effects on the free convection in a rectangular cavity filled with a porous medium. Int J Heat Mass Transf. 2009;52:1525–33.

    Article  CAS  Google Scholar 

  18. Mahmud S, Fraser RA. Magnetohydrodynamic free convection and entropy generation in a square porous cavity. Int J Heat Mass Transf. 2004;47:3245–56.

    Article  Google Scholar 

  19. Kakarantzas SC, Benos LTh, Sarris IE, Knaepen B, Grecos AP, Vlachos NS. MHD liquid metal flow and heat transfer between vertical coaxial cylinders under horizontal magnetic field. Int J Heat Fluid Flow. 2017;65:342–51.

    Article  Google Scholar 

  20. Daniels P, Jones O. Convection in a shallow cavity due to internal heat generation. Int J Heat Mass Transf. 1998;41:3979–87.

    Article  CAS  Google Scholar 

  21. Benos LTh, Kakarantzas SC, Sarris IE, Grecos AP, Vlachos NS. Analytical and numerical study of MHD natural convection in a horizontal shallow cavity with heat generation. Int J Heat Mass Transf. 2014;75:19–30.

    Article  Google Scholar 

  22. Benos LTh, Sarris IE. Analytical study of the magnetohydrodynamic natural convection of a nanofluid filled horizontal shallow cavity with internal heat generation. Int J Heat Mass Transf. 2019;130:862–73.

    Article  CAS  Google Scholar 

  23. Sarris IE, Zikos GK, Grecos AP, Vlachos NS. On the limits of validity of the low magnetic Reynolds number approximation in MHD natural convection heat transfer. Numer Heat Transf B-Fund. 2006;50(2):157–80.

    Article  CAS  Google Scholar 

  24. Murshed SMS, Estellé P. A state of the art review on viscosity of nanofluids. Renew Sust Energy Rev. 2017;76:1134–52.

    Article  CAS  Google Scholar 

  25. Halelfadl S, Estellé P, Aladag B, Doner N, Maré T. Viscosity of carbon nanotubes water based nanofluids: influence of concentration and temperature. Int J Therm Sci. 2013;71:111–7.

    Article  CAS  Google Scholar 

  26. Brinkman H. The viscosity of concentrated suspensions and solutions. Chem Phys. 1952;20:571–81.

    CAS  Google Scholar 

  27. Benos LTh, Karvelas EG, Sarris IE. A theoretical model for the magnetohydrodynamic natural convection of a CNT-water nanofluid incorporating a renovated Hamilton–Crosser model. Int J Heat Mass Transf. 2019;135:548–60.

    Article  CAS  Google Scholar 

  28. Atashafrooz M. The effects of buoyancy force on mixed convection heat transfer of MHD nanofluid flow and entropy generation in an inclined duct with separation considering Brownian motion effects. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08363-w.

    Article  Google Scholar 

  29. Prasher R, Bhattacharya P, Phelan PE. Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett. 2005;94:025901.

    Article  PubMed  Google Scholar 

  30. Koo J, Kleinstreuer C. A new thermal conductivity model for nanofluids. Nanoparticle Res. 2004;6:577–88.

    Article  Google Scholar 

  31. Putnam SA, Cahill DG, Braun PV, Ge Z, Shimmin RG. Thermal conductivity of nanoparticle suspensions. Appl Phys. 2006;99:084308.

    Article  Google Scholar 

  32. Yu W, Choi US. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. Nanoparticle Res. 2003;5:167–71.

    Article  CAS  Google Scholar 

  33. Xie H, Fujii M, Zhang X. Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Heat Mass Transf. 2005;48:2926–32.

    Article  CAS  Google Scholar 

  34. Pasrija R, Srivastava S. The interfacial layer and the thermal conductivity of nanofluid. Heat Transf Asian Res. 2014;43(3):288–96.

    Article  Google Scholar 

  35. Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two component systems. Ind Eng Chem Fund. 1962;1:187–91.

    Article  CAS  Google Scholar 

  36. Jiang H, Xu Q, Huang C, Shi L. The role of interfacial nanolayer in the enhanced thermal conductivity of carbon nanotube-based nanofluids. Appl Phys A-Mater. 2015;118:197–205.

    Article  CAS  Google Scholar 

  37. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, Wongwises S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-Part I: fundamentals and theory. Phys Rep. 2019;790:1–48.

    Article  CAS  Google Scholar 

  38. Corcione M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energ Convers Manage. 2011;52:789–93.

    Article  CAS  Google Scholar 

  39. Khalid A, Khan I, Shafie S. Exact solutions for free convection flow of nanofluids with ramped wall temperature. Eur Phys J. 2015;130:57. https://doi.org/10.1140/epjp/i2015-15057-9.

    Article  Google Scholar 

  40. Ashorynejad HR, Sheikholeslami M, Pop I, Ganji DD. Nanofluid flow and heat transfer due to a stretching cylinder in the presence of magnetic field. Heat Mass Transf. 2013;49:427–36.

    Article  CAS  Google Scholar 

  41. Çengel YA, Turner RH, Cimbala JM. Fundamentals of thermal-fluid sciences. 5th ed. New York: McGraw-Hill Education; 2017.

    Google Scholar 

  42. Benos LTh, Karvelas EG, Sarris IE. Crucial effect of aggregations in CNT-water nanofluid magnetohydrodynamic natural convection. Therm Sci Eng Prog. 2019;11:263–71.

    Article  Google Scholar 

  43. Li Y, Suzuki S, Inagaki T, Yamauchi N. Carbon-nanotube nanofluid thermophysical properties and heat transfer by natural convection. J Phys Conf Ser. 2014;557:012051.

    Article  Google Scholar 

  44. Samioti SE, Benos LTh, Sarris IE. Effect of fractal-shaped outer boundary of glioblastoma multiforme on drug delivery. Comput Methods Prog Biol. 2019;178:191–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis E. Sarris.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Derivation of the governing dimensionless equations

The governing system of two-dimensional steady-state, incompressible, MHD equations has been presented in Eqs. (1)–(4). Taking the derivative of Eqs. (2) and (3) with respect to z and x, respectively, and considering the continuity equation, Eq. (1):

$$u\frac{{\partial^{2} u}}{\partial z\partial x} + w\frac{{\partial^{2} u}}{{\partial z^{2} }} = - \frac{1}{{\rho_{\text{nf}} }}\frac{{\partial^{2} p}}{\partial z\partial x} + v_{\text{nf}} \frac{{\partial^{3} u}}{{\partial z\partial x^{2} }} + v_{\text{nf}} \frac{{\partial^{3} u}}{{\partial z^{3} }} - \frac{{\sigma_{\text{nf}} \,B_{\text{o}}^{2} }}{{\rho_{\text{nf}} }}\frac{\partial u}{\partial z} - \frac{{v_{\text{nf}} }}{K}\frac{\partial u}{\partial z}$$
(33)
$$u\frac{{\partial^{2} w}}{{\partial x^{2} }} + w\frac{{\partial^{2} w}}{\partial x\partial z} = - \frac{1}{{\rho_{\text{nf}} }}\frac{{\partial^{2} p}}{\partial x\partial z} + v_{\text{nf}} \frac{{\partial^{3} w}}{{\partial x^{3} }} + v_{\text{nf}} \frac{{\partial^{3} w}}{{\partial x\partial z^{2} }} + g\beta_{\text{nf}} \frac{\partial T}{\partial x} - \frac{{v_{\text{nf}} }}{K}\frac{\partial w}{\partial x}$$
(34)

Subtracting Eqs. (34) from (33):

$$u\frac{\partial }{\partial x}\left( {\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x}} \right) + w\frac{\partial }{\partial z}\left( {\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x}} \right) = v_{\text{nf}} \left( {\frac{{\partial^{3} u}}{{\partial x^{2} \partial z}} + \frac{{\partial^{3} u}}{{\partial z^{3} }} - \frac{{\partial^{3} w}}{{\partial x^{3} }} - \frac{{\partial^{3} w}}{{\partial z^{2} \partial x}}} \right) - \frac{{\sigma_{\text{nf}} \,B_{\text{o}}^{2} }}{{\rho_{\text{nf}} }}\frac{\partial u}{\partial z} - g\beta_{\text{nf}} \frac{\partial T}{\partial x} - \frac{{v_{\text{nf}} }}{K}\left( {\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x}} \right)$$
(35)

The stream function ψ(x, z) is related to velocity components u and v via:

$$u = \frac{\partial \psi }{\partial z},\quad w = - \frac{\partial \psi }{\partial x}$$
(36)

Substituting Eqs. (36) in (35):

$$\frac{\partial \psi }{\partial z}\frac{\partial }{\partial x}\underbrace {{\left( {\frac{{\partial {}^{2}\psi }}{{\partial x^{2} }} + \frac{{\partial^{2} \psi }}{{\partial z^{2} }}} \right)}}_{{\nabla^{2} \psi }} - \frac{\partial \psi }{\partial x}\frac{\partial }{\partial z}\underbrace {{\left( {\frac{{\partial^{2} \psi }}{{\partial x^{2} }} + \frac{{\partial^{2} \psi }}{{\partial z^{2} }}} \right)}}_{{\nabla^{2} \psi }} = v_{\text{nf}} \underbrace {{\left( {\frac{{\partial^{4} \psi }}{{\partial x^{4} }} + 2\frac{{\partial^{4} \psi }}{{\partial x^{2} \partial z^{2} }} + \frac{{\partial^{4} \psi }}{{\partial z^{4} }}} \right)}}_{{\nabla^{4} \psi }} - \frac{{\sigma_{\text{nf}} \,B_{\text{o}}^{2} }}{{\rho_{\text{nf}} }}\frac{{\partial^{2} \psi }}{{\partial z^{2} }} - g\beta_{\text{nf}} \frac{\partial T}{\partial x} - \frac{{v_{\text{nf}} }}{\rm K}\underbrace {{\left( {\frac{{\partial {}^{2}\psi }}{{\partial x^{2} }} + \frac{{\partial^{2} \psi }}{{\partial z^{2} }}} \right)}}_{{\nabla^{2} \psi }}$$
(37)

Substituting also Eq. (36) in energy equation, namely Eq. (4), it turns out that:

$$\frac{\partial \psi }{\partial z}\frac{\partial T}{\partial x} - \frac{\partial \psi }{\partial x}\frac{\partial T}{\partial z} = a_{\text{nf}} \nabla^{2} T + \frac{Q}{{\left( {\rho \,c_{\text{p}} } \right)_{\text{nf}} }}$$
(38)

Next, the dimensional form of the stream function and energy equations are derived via considering the following magnitudes:

$$X = \frac{x}{h},\quad Z = \frac{z}{h},\quad \varPsi = \frac{\psi }{{a_{\text{nf}} }},\quad \varTheta = \frac{{T\left( {\rho c_{\text{p}} } \right)_{\text{nf}} a_{\text{nf}} }}{{h^{2} Q}}$$
(39)

Thus Eqs. (37) and (38) result in Eqs. (40) and (41), respectively:

$$\nabla^{4} \varPsi = {\rm Pr}_{\text{nf}}^{ - 1} \frac{{\partial (\nabla^{2} \varPsi ,\varPsi )}}{\partial (X,Z)} + {\text{Ha}}_{\text{nf}}^{2} \frac{{\partial^{2} \varPsi }}{{\partial Z^{2} }} + {\text{Ra}}_{\text{nf}} \frac{\partial \varTheta }{\partial X} + {\text{Da}}^{1} \nabla^{2} \varPsi$$
(40)
$$\nabla^{2} \varTheta + 1 = \frac{\partial (\varTheta ,\varPsi )}{\partial (X,Z)}$$
(41)

where the dimensionless numbers Da, Prnf, Ranf and Hanf have already been defined in Eqs. (15)–(18) of the main part of this study. Besides, X, Z, Θ and Ψ are converted to x, z, T and ψ, respectively, for the sake of simplicity.

Derivation of the ordinary differential equations using the asymptotic expansions method

The governing parameter of the present problem is ε, which can be defined as ε ≡ L−1 ≪ 1, where L is the aspect ratio of the cavity that is very large, as it has already been stressed. The core flow covers most of the cavity and its solution relies on the length scales ξ and z (Eq. 24).

Similarly to [20,21,22], the stream function and the temperature fields are expanded with respect to ξ, z as follows:

$$\psi = \psi_{0} (\xi ,z) + L^{ - 1} \,\psi_{1} (\xi ,z) + L^{ - 2} \,\psi_{2} (\xi ,z) + \cdots$$
(42)
$$T = L^{2} \,T_{0} (\xi ,z) + L\,T_{1} (\xi ,z) + T_{2} (\xi ,z) + L^{ - 1} \,T_{3} (\xi ,z) + \cdots$$
(43)

These expansions are substituted into the flow and energy equations and their boundary conditions, which have been analyzed in the main part of the study, for the purpose of obtaining a system of coupled partial equations for the stream function and temperature for every order of magnitude of L.

Thus, substituting Eqs. (42), (43) into (40) in terms of ξ and z:

$$\begin{aligned} & L^{ - 4} \frac{{\partial^{4} \psi_{0} }}{{\partial \xi^{4} }} + 2L^{ - 2} \frac{{\partial^{4} \psi_{0} }}{{\partial \xi^{2} \partial z^{2} }} + \frac{{\partial^{4} \psi_{0} }}{{\partial z^{4} }} + L^{ - 5} \frac{{\partial^{4} \psi_{1} }}{{\partial \xi^{4} }} + 2L^{ - 3} \frac{{\partial^{4} \psi_{1} }}{{\partial \xi^{2} \partial z^{2} }} + L^{ - 1} \frac{{\partial^{4} \psi_{1} }}{{\partial z^{4} }} + \cdots \\ & \quad = {\rm Pr}_{\text{nf}}^{ - 1} \left[ {L^{ - 3} \frac{{\partial (\partial^{2} \psi_{0} /\partial \xi^{2} ,\psi_{0} )}}{\partial (\xi ,z)} + L^{ - 1} \frac{{\partial (\partial^{2} \psi_{0} /\partial z^{2} ,\psi_{0} )}}{\partial (\xi ,z)}} \right] \\ & \quad \quad + \,{\rm Pr}_{\text{nf}}^{ - 1} \left[ {L^{ - 4} \frac{{\partial (\partial^{2} \psi_{1} /\partial \xi^{2} ,\psi_{1} )}}{\partial (\xi ,z)} + L^{ - 2} \frac{{\partial (\partial^{2} \psi_{1} /\partial z^{2} ,\psi_{1} )}}{\partial (\xi ,z)}} \right] + \cdots \\ & \quad \quad + \,{\text{Ha}}_{\text{nf}}^{2} \frac{{\partial^{2} \psi_{0} }}{{\partial z^{2} }} + {\text{Ha}}_{\text{nf}}^{2} L^{ - 1} \frac{{\partial^{2} \psi_{1} }}{{\partial z^{2} }} + \cdots \\ & \quad \quad + \,\underbrace {{{\text{Ra}}_{\text{nf}} L}}_{{{\text{Rs}}_{\text{nf}} }}\frac{{\partial {\rm T}_{0} }}{\partial \xi } + \underbrace {{{\text{Ra}}_{\text{nf}} }}_{{{\text{Rs}}_{\text{nf}} L^{ - 1} }}\frac{{\partial {\rm T}_{1} }}{\partial \xi } + \cdots \\ & \quad \quad + \,{\text{Da}}^{ - 1} L^{ - 1} \frac{{\partial^{2} \psi_{0} }}{{\partial \xi^{2} }} + {\text{Da}}^{ - 1} \frac{{\partial^{2} \psi_{0} }}{{\partial z^{2} }} + {\text{Da}}^{ - 1} L^{ - 2} \frac{{\partial^{2} \psi_{1} }}{{\partial \xi^{2} }} + {\text{Da}}^{ - 1} L^{ - 1} \frac{{\partial^{2} \psi_{1} }}{{\partial z^{2} }} + \cdots \\ \end{aligned}$$
(44a)

Next, the terms of order one and L−1 are equalized:

$$\frac{{\partial^{4} \psi_{0} }}{{\partial z^{4} }} - \left( {{\text{Ha}}_{\text{nf}}^{2} + {\text{Da}}^{ - 1} } \right)\frac{{\partial^{2} \psi_{0} }}{{\partial z^{2} }} = {\text{Rs}}_{\text{nf}} \frac{{\partial T_{0} }}{\partial \xi }$$
(44b)
$$\frac{{\partial^{4} \psi_{1} }}{{\partial z^{4} }} = {\rm Pr}_{\text{nf}}^{ - 1} \frac{{\partial (\partial^{2} \psi_{0} /\partial z^{2} ,\psi_{0} )}}{\partial (\xi ,z)} + \left( {{\text{Ha}}_{\text{nf}}^{2} + {\text{Da}}^{ - 1} } \right)\frac{{\partial^{2} \psi_{1} }}{{\partial z^{2} }} + {\text{Rs}}_{\text{nf}} \frac{{\partial T_{1} }}{\partial \xi } + {\text{Da}}^{ - 1} \frac{{\partial^{2} \psi_{0} }}{{\partial \xi^{2} }}$$
(44c)

Similarly, substituting Eqs. (42), (43) into (41) at order L2, L and 1 it is obtained, respectively, as:

$$\frac{{\partial^{2} T_{0} }}{{\partial z^{2} }} = 0$$
(45a)
$$\frac{{\partial^{2} T_{1} }}{{\partial z^{2} }} = \frac{{\partial T_{0} }}{\partial \xi }\frac{{\partial \psi_{0} }}{\partial z}$$
(45b)
$$\frac{{\partial^{2} T_{2} }}{{\partial z^{2} }} = - 1 - \frac{{\partial^{2} T_{0} }}{{\partial \xi^{2} }} + \frac{{\partial T_{1} }}{\partial \xi }\frac{{\partial \psi_{0} }}{\partial z} + \frac{{\partial T_{0} }}{\partial \xi }\frac{{\partial \psi_{1} }}{\partial z} - \frac{{\partial T_{1} }}{\partial z}\frac{{\partial \psi_{0} }}{\partial \xi }$$
(45c)

The solution of Eq. (45a) with the adiabatic boundary conditions \(\partial T_{0} /\partial z = 0\) at \(z = \pm 0.5\) is:

$$T_{0} = \theta_{0} (\xi )$$
(46)

where θ0 is a function of ξ, independent of z.

Derivation of the analytical solutions

Following the analysis of [20,21,22], only the stream functions of order one and temperatures of order L2 are going to be analyzed which give a satisfactory picture of the nanofluid flow and heat transfer for the core region. Focusing on Eq. (44b), its complementary equation is:

$$\frac{{\partial^{4} \psi_{0} }}{{\partial z^{4} }} - \left( {{\text{Ha}}_{\text{nf}}^{2} + {\text{Da}}^{ - 1} } \right)\frac{{\partial^{2} \psi_{0} }}{{\partial z^{2} }} = 0$$
(47)

The general solution of the complementary equation is:

$$\psi_{0,c} = A(\xi )\cosh \left[ {\left( {{\text{Ha}}_{\text{nf}}^{2} + {\text{Da}}^{ - 1} } \right)z} \right] + B(\xi )\sinh \left[ {\left( {{\text{Ha}}_{\text{nf}}^{2} + {\text{Da}}^{ - 1} } \right)z} \right] + C(\xi )z + D(\xi )$$
(48a)

while its particular solution is in the same manner as [20,21,22]:

$$\psi_{{0,{\text{p}}}} = - \frac{{{\text{Rs}}_{\text{nf}} \theta_{0}^{{\prime }} }}{{{\text{Ha}}^{2} + {\text{Da}}^{ - 1} }}\frac{{z^{2} }}{2}$$
(48b)

Substituting the boundary conditions pertaining to ψ0, namely Eqs. (19) and (20) of the main part of the present study, and adding the particular and general solutions:

$$\psi_{0} = \frac{{{\text{Rs}}_{\text{nf}} \theta_{0}^{{\prime }} }}{{{\text{Ha}}^{2} + {\text{Da}}^{ - 1} }} \cdot G(z)$$
(49)

where

$$G(z) = \frac{1}{2}\,\left( {\frac{{\cosh \left( {\sqrt {{\text{Ha}}^{2} + {\text{Da}}^{ - 1} } z} \right)}}{{\sqrt {{\text{Ha}}^{2} + {\text{Da}}^{ - 1} } \,\sinh \left( {\sqrt {{\text{Ha}}^{2} + {\text{Da}}^{ - 1} } /2} \right)}} - \frac{{\coth \left( {\sqrt {{\text{Ha}}^{2} + {\text{Da}}^{ - 1} } /2} \right)}}{{\sqrt {{\text{Ha}}^{2} + {\text{Da}}^{ - 1} } }} + \frac{1}{4} - z^{2} } \right)$$
(50)

Integrating in z Eq. (45c) and applying the boundary condition \(\left. {\partial T_{2} /\partial z} \right|_{z = \pm 0.5} = 0\), the only consistent solution according to [21, 22] should obey the equation for θ0:

$$\theta_{0}^{{\prime \prime }} + a_{\text{m}} \,R_{1}^{2} \,\left( {\theta_{0}^{{\prime }} } \right)^{2} \theta_{0}^{{\prime \prime }} + 1 = 0$$
(51)

where

$$\alpha_{m} = \frac{3}{{\left( {{\text{Ha}}^{2} + {\text{Da}}^{ - 1} } \right)^{2} }}\int\limits_{{{\raise0.5ex\hbox{$\scriptstyle { - 1}$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} {G(z)^{2} {\text{d}}z} \Rightarrow$$
(52)

Following the analysis of [21], the first integration of Eq. (51) considering the symmetry condition of the solution yields:

$$\theta_{0}^{{\prime }} = a_{\text{m}}^{ - 1/2} \,R_{1}^{ - 1} \,\left[ {F_{\text{m}}^{ + } (\xi ) + F_{\text{m}}^{ - } (\xi )} \right]$$
(53)

where

$$F_{\text{m}}^{ \pm } (\xi ) = \left\{ {\frac{3}{2}a_{\text{m}}^{1/2} \,R_{1} \,\left( {\frac{1}{2} - \xi } \right) \pm \left[ {1 + \frac{9}{4}a_{\text{m}} \,R_{1}^{2} \left( {\xi - \frac{1}{2}} \right)^{2} } \right]^{1/2} } \right\}^{1/3}$$
(54)

Moreover, using \(\sinh y_{\text{m}} = \sinh^{ - 1} \left[ {\frac{3}{2}a_{\text{m}}^{1/2} \,{\text{Rs}}_{\text{nf}} \left( {\xi - \frac{1}{2}} \right)} \right]\) with a further integration, a closed-form solution of the core stream function, vertical velocity and temperature is produced (Eqs. (25)–(27), respectively) where \(y_{{{\text{m}},0}} = \sinh^{ - 1} \left( {\frac{3}{4}a_{\text{m}}^{1/2} {\text{Rs}}_{\text{nf}} } \right).\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benos, L.T., Polychronopoulos, N.D., Mahabaleshwar, U.S. et al. Thermal and flow investigation of MHD natural convection in a nanofluid-saturated porous enclosure: an asymptotic analysis. J Therm Anal Calorim 143, 751–765 (2021). https://doi.org/10.1007/s10973-019-09165-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09165-w

Keywords

Navigation