Skip to main content
Log in

A numerical study on the free vibrations of nanocomposite conical panels with variously shaped cutout

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Presented herein is a novel numerical approach for the vibrational analysis of conical panels with arbitrary-shaped holes made of functionally graded graphene platelet-reinforced composite (FG-GPLRC) within the framework of higher-order shear deformation theory (HSDT). The developed approach can be called variational differential quadrature finite element method (VDQFEM) as it is based on the ideas of VDQ and finite element methods. The governing equations are obtained by means of Hamilton’s principle. Also, the relations of paper are presented in a new matrix–vector form which can be efficiently utilized in the coding process of numerical techniques. By VDQFEM, the space domain of structure is first transformed into a number of finite elements. Then, the VDQ discretization technique is implemented within each element to derive the mass and stiffness matrices. Finally, the assemblage procedure is followed for obtaining total mass and stiffness matrices. Due to using HSDT, a novel mixed formulation approach is also proposed to accommodate the continuity of first-order derivatives on the common boundaries of elements. Conical panels with square/circular/elliptical cutout and with crack are selected to generate the numerical results. In the numerical examples, the effects of geometrical properties and reinforcement with GPL on the resonant frequencies of panels subject to various boundary conditions are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. A.M.K. Esawi, M.M. Farag, Mater. Des. 28, 2394–2401 (2007)

    Article  Google Scholar 

  2. B. Ashrafi, P. Hubert, S. Vengallatore, Nanotechnology 17, 4895 (2006)

    Article  ADS  Google Scholar 

  3. T.K. Das, S. Prusty, Polym. Plast. Technol. Eng. 52, 319–331 (2013)

    Article  Google Scholar 

  4. L. Gong, R.J. Young, I.A. Kinloch, I. Riaz, R. Jalil, K.S. Novoselov, ACS Nano 6, 2086–2095 (2012)

    Article  Google Scholar 

  5. A.K. Kasar, G. Xiong, P.L. Menezes, JOM 70, 829–836 (2018)

    Article  Google Scholar 

  6. J.M.J. Dusza, A. Duszová, L. Kvetková, M. Nosko, P. Kun, C. Balázsi, J. Eur. Ceram. Soc. 32, 3389–3397 (2012)

    Article  Google Scholar 

  7. F. Ebrahimi, S. Qaderi, Eur. Phys. J. Plus 134, 349 (2019)

    Article  Google Scholar 

  8. J. Yang, H. Wu, S. Kitipornchai, Compos. Struct. 161, 111–118 (2018)

    Article  Google Scholar 

  9. S. Qaderi, F. Ebrahimi, M. Vinyas, Eur. Phys. J. Plus 134, 339 (2019)

    Article  Google Scholar 

  10. X. Li, M. Song, J. Yang, S. Kitipornchai, Nonlinear Dyn. (2018). https://doi.org/10.1007/s11071-018-4660-9

    Article  Google Scholar 

  11. Y.Q. Wang, C. Ye, J.W. Zu, Aerosp. Sci. Technol. 85, 359–370 (2019)

    Article  Google Scholar 

  12. Z. Zhou, Y. Ni, Z. Tong, S. Zhu, J. Sun, X. Xu, Int. J. Mech. Sci. 151, 537–550 (2019)

    Article  Google Scholar 

  13. M. Akbari, Y. Kiani, M.M. Aghdam, M.R. Eslami, Compos. Struct. 116, 732–746 (2014)

    Article  Google Scholar 

  14. N. Jooybar, P. Malekzadeh, A. Fiouz, M. Vaghefi, Thin-Walled Struct. 103, 45–61 (2016)

    Article  Google Scholar 

  15. Ç. Demir, K. Mercan, Ö. Civalek, Compos. Part B 94, 1–10 (2016)

    Article  Google Scholar 

  16. R. Ansari, J. Torabi, M. Faghih Shojaei, E. Hasrati, Compos. Struct. 157, 398–411 (2016)

    Article  Google Scholar 

  17. Y. Kiani, Thin-Walled Struct. 119, 47–57 (2017)

    Article  Google Scholar 

  18. Y. Kiani, R. Dimitri, F. Tornabene, Eng. Struct. 172, 472–482 (2018)

    Article  Google Scholar 

  19. M. Huang, T. Sakiyama, J. Sound Vib. 226, 769–786 (1999)

    Article  ADS  Google Scholar 

  20. Y. Chen, G. Jin, Z. Liu, Int. J. Mech. Sci. 89, 264–278 (2014)

    Article  Google Scholar 

  21. I. Shufrin, M. Eisenberger, Appl. Math. Model. 40, 6983–7000 (2016)

    Article  MathSciNet  Google Scholar 

  22. B. Huang, J. Wang, J. Du, T. Ma, Y. Guo, Z. Qian, Compos. Struct. 150, 53–61 (2016)

    Article  Google Scholar 

  23. M. Hachemi, S.M. Hamza-Cherif, J. Sandw. Struct. Mater. (2018). https://doi.org/10.1177/1099636218811393

    Article  Google Scholar 

  24. A. Mandal, C. Ray, S. Haldar, Compos. Part B. 161, 228–240 (2019)

    Article  Google Scholar 

  25. T. Shojaee, B. Mohammadi, R. Madoliat, D. Salimi-Majd, Compos. Struct. 210, 538–552 (2019)

    Article  Google Scholar 

  26. M. Faghih Shojaei, R. Ansari, Appl. Math. Model. 49, 705–738 (2017)

    Article  MathSciNet  Google Scholar 

  27. H. Rouhi, F. Ebrahimi, R. Ansari, J. Torabi, Eur. J. Mech. A Solids 73, 268–281 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  28. E. Hasrati, R. Ansari, J. Torabi, Appl. Math. Model. 53, 653–672 (2018)

    Article  MathSciNet  Google Scholar 

  29. R. Ansari, E. Hasrati, A.H. Shakouri, M. Bazdid-Vahdati, H. Rouhi, Int. J. Non-Linear Mech. 106, 130–143 (2018)

    Article  ADS  Google Scholar 

  30. J. Torabi, R. Ansari, R. Hassani, Eur. J. Mech. A Solids 73, 144–160 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  31. R. Ansari, J. Torabi, R. Hassani, Eng. Struct. 181, 653–669 (2019)

    Article  Google Scholar 

  32. R. Hassani, R. Ansari, H. Rouhi, Int. J. Numer. Methods Eng. 118, 345–370 (2019)

    Article  Google Scholar 

  33. R. Hassani, R. Ansari, H. Rouhi, Int. J. Non-Linear Mech. 116, 39–54 (2019)

    Article  ADS  Google Scholar 

  34. J.N. Reddy, A. Khdeir, Buckling and vibration of laminated composite plates using various plate theories. AIAA J. 27(12), 1808–1817 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  35. J.N. Reddy, Theory and Analysis of Elastic Plates and Shells (CRC Press , Boca Raton, 2006).

    Book  Google Scholar 

  36. F. Tornabene, E. Viola, D.J. Inman, J. Sound Vib. 328, 259–290 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ansari.

Appendix (Discretization)

Appendix (Discretization)

There are two types of discretization in the VDQFEM method. According to Fig. 1, these discretizations can be described as follows: the domain under study is first discretized into a number of geometrical elements and then is mapped into the natural space with interpolation of position vector of each element using shape functions and corresponding nodal points (circular points). Afterwards, in order to perform the numerical differentiation and integration processes of VDQ method (which is specific to this technique), this space is discretized using the distribution of Chebyshev points. Two important control parameters for discretization and convergence can be thus considered in this approach: (1) finite element meshing and (2) distribution of nodal points of each element.

In this Appendix, vector–matrix relations are discretized on the domain of an arbitrary element. The discretization process is performed by means of the operator \(\left[\kern-0.15em\left[ {{\blacksquare }_{1} } \right]\kern-0.15em\right]_{{{\blacksquare }_{2} }}\) which discretizes the parameter ■1 on the space ■2. The concepts of discretization can be found in [26, 32, 33]. The following spaces and parameters are also considered for discretization of relations:

$$ \left\{ {\begin{array}{*{20}l} {{\mathfrak{A}}_{i} - {\text{space}}\left( {\text{thickness direction}} \right)} \hfill & {{\text{in }}X_{i} {\text{ direction}}} \hfill \\ {{\mathfrak{B}} - {\text{space }}\left( {\text{middle plane}} \right)} \hfill & {{\text{in }}X_{1} X_{2} {\text{ direction}}} \hfill \\ {{\mathfrak{C}} - {\text{space }}\left( {3{\text{D domain}}} \right)} \hfill & {{\text{in }}X_{1} X_{2} X_{3} {\text{ direction}}} \hfill \\ \end{array} } \right. $$

where

$$ \left\{ {\begin{array}{*{20}l} {n_{\xi } } \hfill & {\text{number of computational grid points along each natural direction in each element}} \hfill \\ {n = n_{\xi }^{2} } \hfill & {\text{number of total computational grid points in each element}} \hfill \\ {n_{e} } \hfill & {\text{number of elements}} \hfill \\ {n_{h} } \hfill & {\text{number of computational grid points along thickness direction}} \hfill \\ \end{array} } \right. $$

1.1 Material properties

According to the shifted Chebyshev–Gauss–Lobatto grid points on \(\left[ {a,b} \right]\), given by

$$ X = a + \frac{b - a}{2}\left( {1 - \cos \frac{i - 1}{{n - 1}}\pi } \right), i = 1,2, \ldots ,m $$
(67)

the discretized forms of \(X_{i}\) in \({\mathfrak{A}}_{i}\) and \({\mathfrak{B}}\) space become

$$ {\mathbf{X}}_{1}^{{{\mathfrak{A}}_{1} }} = \left[\kern-0.15em\left[ {X_{1} } \right]\kern-0.15em\right]_{{{\mathfrak{A}}_{1} }} = \left[ {\frac{{L_{1} }}{2} + \frac{L}{2}\left( {1 - \cos \frac{i - 1}{{n_{\xi } - 1}}\pi } \right)} \right], i = 1,2, \ldots ,n_{\xi } $$
(68)
$$ {\mathbf{X}}_{2}^{{{\mathfrak{A}}_{2} }} = \left[\kern-0.15em\left[ {X_{2} } \right]\kern-0.15em\right]_{{{\mathfrak{A}}_{2} }} = \left[ {\frac{{\theta_{0} }}{2}\left( {1 - \cos \frac{i - 1}{{n_{\xi } - 1}}\pi } \right)} \right], i = 1,2, \ldots ,n_{\xi } $$
(69)
$$ {\mathbf{X}}_{3}^{{{\mathfrak{A}}_{3} }} = \left[\kern-0.15em\left[ {X_{3} } \right]\kern-0.15em\right]_{{{\mathfrak{A}}_{3} }} = \left[ { - \frac{h}{2} - \frac{h}{2}\left( {1 - \cos \frac{i - 1}{{n_{h} - 1}}\pi } \right)} \right], i = 1,2, \ldots ,n_{h} $$
(70)
$$ {\mathbf{X}}_{\mathbf{1}}^{{\mathfrak{B}}} = \left[\kern-0.15em\left[ {X_{1} } \right]\kern-0.15em\right]_{{\mathfrak{B}}} = \mathbf{1}_{{n_{\xi } *1}} { \circledast }{\mathbf{X}}_{\mathbf{1}}^{{{\mathfrak{A}}_{1} }} , $$
(71)
$$ {\mathbf{X}}_{\mathbf{2}}^{{\mathfrak{B}}} = \left[\kern-0.15em\left[ {X_{2} } \right]\kern-0.15em\right]_{{\mathfrak{B}}} = \mathbf{1}_{{n_{\xi } *1}} { \circledast }{\mathbf{X}}_{\mathbf{2}}^{{{\mathfrak{A}}_{2} }} , $$
(72)

The discretized form of Eq. (78) can be thus written as

$$ {\mathbb{V}}_{GPL} = \left[\kern-0.15em\left[ {V_{GPL} } \right]\kern-0.15em\right]_{{{\mathfrak{A}}_{3} }} = \left\{ {\begin{array}{*{20}l} {V_{GPL}^{*} \mathbf{1}_{{n_{h} \times 1}} } \hfill & {{\text{UD}}} \hfill \\ {2\left( {1 - \left( {2\left| {{\mathbf{X}}_{\mathbf{3}}^{{{\mathfrak{A}}_{3} }} } \right|/h} \right)} \right)V_{GPL}^{*} } \hfill & {{\text{FGO}}} \hfill \\ {\left( {1 - \left( {2{\mathbf{X}}_{\mathbf{3}}^{{{\mathfrak{A}}_{3} }} /h} \right)} \right)V_{GPL}^{*} } \hfill & {{\text{FGO}}} \hfill \\ {4\left( {\left| {{\mathbf{X}}_{\mathbf{3}}^{{\mathfrak{A}}} } \right|/h} \right)V_{GPL}^{*} } \hfill & {{\text{FGX}}} \hfill \\ \end{array} } \right., $$
(73)

in which \(\left[\kern-0.15em\left[ {\blacksquare } \right]\kern-0.15em\right]\) and all the double-struck letters indicate the discretized form of corresponding parameters. Moreover, \(1_{{n_{h} \times 1}}\) denotes an all-ones \(n_{h} \times 1\) vector. The discretized form of Eqs. (70), (75) and (76) are written as

$$ {\mathbb{E}}_{C} = \left[\kern-0.15em\left[ {E_{C} } \right]\kern-0.15em\right]_{{{\mathfrak{A}}_{3} }} = \frac{3}{8}\left( {1 + \xi_{L} \eta_{L} {\mathbb{V}}_{GPL} } \right) \circ \left( {1 - \eta_{L} {\mathbb{V}}_{GPL} } \right)^{ \circ - 1} E_{M} + \frac{5}{8}\left( {1 + \xi_{W} \eta_{W} {\mathbb{V}}_{GPL} } \right) \circ \left( {1 - \eta_{W} {\mathbb{V}}_{GPL} } \right)^{ \circ - 1} E_{M} , $$
(74)
$$ \overline{\overline{\rho }}_{c} = \left[\kern-0.15em\left[ {\rho_{c} } \right]\kern-0.15em\right]_{{{\mathfrak{A}}_{3} }} = \rho_{M} + \left( {\rho_{GPL} - \rho_{M} } \right){\mathbb{V}}_{GPL} , $$
(75)
$$ \overline{\overline{\nu }}_{c} = \left[\kern-0.15em\left[ {\nu_{c} } \right]\kern-0.15em\right]_{{{\mathfrak{A}}_{3} }} = \nu_{M} + \left( {\nu_{GPL} - \nu_{M} } \right){\mathbb{V}}_{GPL} , $$
(76)

Also, \({\mathbf{A}}^{{ \circ {\text{n}}}}\) shows that each element of matrix \({\mathbf{A}}\) is raised to the \(n\)-th power, i.e., \({\mathbf{A}}^{{ \circ {\text{n}}}} = \underbrace {{{\mathbf{A}} \circ {\mathbf{A}} \circ \ldots \circ {\mathbf{A}}}}_{n}\).

1.2 Displacement field

Additionally, the discretized form of Eq. (83) is presented as

$$ {\mathbb{P}}_{0} = \left[\kern-0.15em\left[ {{\mathbf{P}}_{0} } \right]\kern-0.15em\right]_{{\mathfrak{A}}} = \left[ {\begin{array}{*{20}c} {\mathbf{1}_{{n_{h} *1}} } &\quad \mathbf{0} &\quad \mathbf{0} &\quad {{\mathbf{X}}_{\mathbf{3}}^{{{\mathfrak{A}}_{\mathbf{3}} }} } &\quad \mathbf{0} &\quad {c{\mathbf{X}}_{\mathbf{3}}^{{{\mathfrak{A}}_{3} \circ 3}} } &\quad \mathbf{0} \\ \mathbf{0} &\quad {\mathbf{1}_{{n_{h} *1}} } &\quad \mathbf{0} &\quad \mathbf{0} &\quad {{\mathbf{X}}_{\mathbf{3}}^{{{\mathfrak{A}}_{3} }} } &\quad \mathbf{0} &\quad {c{\mathbf{X}}_{\mathbf{3}}^{{{\mathfrak{A}}_{3} \circ 3}} } \\ \mathbf{0} &\quad \mathbf{0} &\quad {\mathbf{1}_{{n_{h} *1}} } &\quad \mathbf{0} &\quad \mathbf{0} &\quad \mathbf{0} &\quad \mathbf{0} \\ \end{array} } \right], $$
(77)

The each-block-diagonal form of Eq. (77) can be defined as follows:

$$ \mathop{{\mathbb{P}}_{0}}\limits^{\smile} = \left\langle {\left[\kern-0.15em\left[ {{\mathbf{P}}_{0} } \right]\kern-0.15em\right]_{{{\mathfrak{A}}_{3} }} } \right\rangle_{{\mathbb{b}}} = \left[ {\begin{array}{*{20}c} {{\mathbf{I}}_{{n_{h} }} } &\quad \mathbf{0} &\quad \mathbf{0} &\quad \langle{{\mathbf{X}}_{\mathbf{3}}^{{{\mathfrak{A}}_{3} }} }\rangle &\quad \mathbf{0} &\quad \langle{c{\mathbf{X}}_{\mathbf{3}}^{{{\mathfrak{A}}_{3} \circ 3}}}\rangle &\quad \mathbf{0} \\ \mathbf{0} &\quad {{\mathbf{I}}_{{n_{h} }} } &\quad \mathbf{0} &\quad \mathbf{0} &\quad \langle{{\mathbf{X}}_{\mathbf{3}}^{{{\mathfrak{A}}_{3} }}}\rangle &\quad \mathbf{0} &\quad \langle{c{\mathbf{X}}_{\mathbf{3}}^{{{\mathfrak{A}}_{3} \circ 3}}}\rangle \\ \mathbf{0} &\quad \mathbf{0} &\quad {{\mathbf{I}}_{{n_{h} }} } &\quad \mathbf{0} &\quad \mathbf{0} &\quad \mathbf{0} &\quad \mathbf{0} \\ \end{array} } \right], $$
(78)

in which \(\left\langle {\blacksquare } \right\rangle_{{\mathbb{b}}}\) and \( \mathop{\blacksquare}\limits^{\smile} \) denote each-block-diagonal operator and \(\left\langle {\blacksquare } \right\rangle\) is the vector-diagonal operator which generates diagonal matrix from a given vector. Also, the discretized form of \({\mathbf{E}}_{0}\) is introduced as

$$ {\mathbb{E}}_{0} = \left[\kern-0.15em\left[ {{\mathbf{E}}_{0} } \right]\kern-0.15em\right]_{{\mathfrak{B}}} = \left[ {\begin{array}{*{20}c} {{\mathbf{I}}_{n} } &\quad \mathbf{0} &\quad \mathbf{0} &\quad \mathbf{0} &\quad \mathbf{0} &\quad \mathbf{0} &\quad \mathbf{0} \\ 0 &\quad {{\mathbf{I}}_{n} } &\quad \mathbf{0} &\quad \mathbf{0} &\quad \mathbf{0} &\quad \mathbf{0} &\quad \mathbf{0} \\ \mathbf{0} &\quad \mathbf{0} &\quad {{\mathbf{I}}_{n} } &\quad \mathbf{0} &\quad \mathbf{0} &\quad \mathbf{0} &\quad \mathbf{0} \\ \mathbf{0} &\quad \mathbf{0} &\quad \mathbf{0} &\quad {{\mathbf{I}}_{n} } &\quad \mathbf{0} &\quad \mathbf{0} &\quad \mathbf{0} \\ \mathbf{0} &\quad \mathbf{0} &\quad \mathbf{0} &\quad \mathbf{0} &\quad {{\mathbf{I}}_{n} } &\quad \mathbf{0} &\quad \mathbf{0} \\ \mathbf{0} &\quad \mathbf{0} &\quad \mathbf{0} &\quad \mathbf{1} &\quad \mathbf{0} &\quad {{\mathbf{I}}_{n} } &\quad \mathbf{0} \\ 0 &\quad \mathbf{0} &\quad \mathbf{0} &\quad \mathbf{0} &\quad 1 &\quad \mathbf{0} &\quad {{\mathbf{X}}_{\mathbf{1}}^{*} /s\user2{ }} \\ \end{array} } \right], $$
(79)

where

$$ {\mathbf{X}}_{\mathbf{1}}^{*} = \left\langle\left[\kern-0.15em\left[\frac{1}{{X_{1}}}\right]\kern-0.15em\right]_{{\mathfrak{B}}}\right\rangle = \left\langle{\mathbf{X}}_{\mathbf{1}}^{{\mathfrak{B} \circ - 1}}\right\rangle $$
(80)

Also, \({ \circledast }\) stands for the Kronecker product. It should be noted that \({\mathbf{I}}_{n}\) is an \(n \times n\) identity matrix. Furthermore, \(\left\langle {\mathbb{B}} \right\rangle_{{\mathbb{b}}}\) denotes each block diagonal of block matrix \({\mathbb{B}}\).

1.3 Unknown vectors

In addition, the discretized form of Eq. (84) is given by

$$ {\mathbb{d}} = \left[\kern-0.15em\left[{\mathbf{d}}\right]\kern-0.15em\right]_{{\mathfrak{B}}} = \left[ {\begin{array}{*{20}c} {{\mathbb{u}}^{{\text{T}}} } &\quad {{\mathbb{v}}^{{\text{T}}} } &\quad {{\mathbb{w}}^{{\text{T}}} } &\quad {\overline{\overline{\psi }}^{{\text{T}}} } &\quad {\overline{\overline{\phi }}^{{\text{T}}} } &\quad {\overline{\overline{\chi }}^{{\text{T}}} } &\quad {\overline{\overline{\gamma }}^{{\text{T}}} } \\ \end{array} } \right]^{{\text{T}}} , $$
(81)

1.4 Strain tensor

The discretized form of matrices introduced in Eqs. (26) and (27) is given by

$$ \begin{aligned} {\mathbb{P}}_{1} & = \left[\kern-0.15em\left[ {{\mathbf{P}}_{1} } \right]\kern-0.15em\right]_{{{\mathfrak{A}}_{3} }} = \left[ {\begin{array}{*{20}c} {\mathbf{1}_{{n_{h} *1}} } &\quad \mathbf{0} &\quad \mathbf{0} &\quad {{\mathbf{X}}_{\mathbf{3}}^{{{\mathfrak{A}}_{3} }} } &\quad \mathbf{0} &\quad \mathbf{0} &\quad {c{\mathbf{X}}_{\mathbf{3}}^{{{\mathfrak{A}}_{3} \circ 3}} } &\quad \mathbf{0} &\quad \mathbf{0} \\ \mathbf{0} &\quad {\mathbf{1}_{{n_{h} *1}} } &\quad \mathbf{0} &\quad \mathbf{0} &\quad {{\mathbf{X}}_{\mathbf{3}}^{{{\mathfrak{A}}_{3} }} } &\quad \mathbf{0} &\quad \mathbf{0} &\quad {{\mathbf{X}}_{\mathbf{3}}^{{{\mathfrak{A}}_{3} \circ 3}} } &\quad \mathbf{0} \\ \mathbf{0} &\quad \mathbf{0} &\quad {\mathbf{1}_{{n_{h} *1}} } &\quad \mathbf{0} &\quad \mathbf{0} &\quad {{\mathbf{X}}_{\mathbf{3}}^{{{\mathfrak{A}}_{3} }} } &\quad \mathbf{0} &\quad \mathbf{0} &\quad {c{\mathbf{X}}_{\mathbf{3}}^{{{\mathfrak{A}}_{3} \circ 3}} } \\ \end{array} } \right], \\ {\mathbb{P}}_{2} &\quad = \left[\kern-0.15em\left[ {{\mathbf{P}}_{2} } \right]\kern-0.15em\right]_{{{\mathfrak{A}}_{3} }} = \left[ {\begin{array}{*{20}c} {\mathbf{1}_{{n_{h} *1}} } &\quad \mathbf{0} &\quad {3c{\mathbf{X}}_{\mathbf{3}}^{{{\mathfrak{A}}_{3} \circ 2}} } &\quad \mathbf{0} \\ \mathbf{0} &\quad {\mathbf{1}_{{n_{h} *1}} } &\quad \mathbf{0} &\quad {3c{\mathbf{X}}_{\mathbf{3}}^{{{\mathfrak{A}}_{3} \circ 2}} } \\ \end{array} } \right], \\ {\mathbb{P}} &\quad = \left[\kern-0.15em\left[ {\mathbf{P}} \right]\kern-0.15em\right]_{{{\mathfrak{A}}_{3} }} = \left[ {\begin{array}{*{20}c} {{\mathbb{P}}_{1} } &\quad \mathbf{0} \\ \mathbf{0} &\quad {{\mathbb{P}}_{2} } \\ \end{array} } \right] \\ \end{aligned} $$
(82)

Furthermore, the each-block-diagonal form of \({\mathbb{P}}_{1}\) and \({\mathbb{P}}_{2}\) can be presented as

$$ \begin{aligned} \mathop{{\mathbb{P}}_{1}}\limits^{\smile} & = \left\langle {\left[\kern-0.15em\left[ {{\mathbf{P}}_{1} } \right]\kern-0.15em\right]_{{{\mathfrak{A}}_{3} }} } \right\rangle_{{\mathbb{b}}} = \left[ {\begin{array}{*{20}c} {{\mathbf{I}}_{{n_{h} }} } &\quad \mathbf{0} &\quad \mathbf{0} &\quad {\left\langle {{\mathbf{X}}_{\mathbf{3}}^{{{\mathfrak{A}}_{3} }} } \right\rangle } &\quad \mathbf{0} &\quad \mathbf{0} &\quad {\left\langle {c{\mathbf{X}}_{\mathbf{3}}^{{{\mathfrak{A}}_{3} \circ 3}} } \right\rangle } &\quad \mathbf{0} &\quad \mathbf{0} \\ \mathbf{0} &\quad {{\mathbf{I}}_{{n_{h} }} } &\quad \mathbf{0} &\quad \mathbf{0} &\quad {\left\langle {{\mathbf{X}}_{\mathbf{3}}^{{{\mathfrak{A}}_{3} }} } \right\rangle } &\quad \mathbf{0} &\quad \mathbf{0} &\quad {\left\langle {c{\mathbf{X}}_{\mathbf{3}}^{{{\mathfrak{A}}_{3} \circ 3}} } \right\rangle } &\quad \mathbf{0} \\ \mathbf{0} &\quad \mathbf{0} &\quad {{\mathbf{I}}_{{n_{h} }} } &\quad \mathbf{0} &\quad \mathbf{0} &\quad {\left\langle {{\mathbf{X}}_{\mathbf{3}}^{{{\mathfrak{A}}_{3} }} } \right\rangle } &\quad \mathbf{0} &\quad \mathbf{0} &\quad {\left\langle {c{\mathbf{X}}_{\mathbf{3}}^{{{\mathfrak{A}}_{3} \circ 3}} } \right\rangle } \\ \end{array} } \right] \\ \mathop{{\mathbb{P}}_{2}}\limits^{\smile} &\quad = \left\langle {\left[\kern-0.15em\left[ {{\mathbf{P}}_{2} } \right]\kern-0.15em\right]_{{{\mathfrak{A}}_{3} }} } \right\rangle_{{\mathbb{b}}} = \left[ {\begin{array}{*{20}c} {{\mathbf{I}}_{{n_{h} }} } &\quad \mathbf{0} &\quad {\left\langle {3c{\mathbf{X}}_{\mathbf{3}}^{{{\mathfrak{A}}_{3} \circ 2}} } \right\rangle } &\quad \mathbf{0} \\ \mathbf{0} &\quad {{\mathbf{I}}_{{n_{h} }} } &\quad \mathbf{0} &\quad {\left\langle {3c{\mathbf{X}}_{\mathbf{3}}^{{{\mathfrak{A}}_{3} \circ 2}} } \right\rangle } \\ \end{array} } \right], \mathop{\mathbb{P}}\limits^{\smile} = \left\langle {\left[\kern-0.15em\left[ {\mathbf{P}} \right]\kern-0.15em\right]_{{{\mathfrak{A}}_{3} }} } \right\rangle_{{\mathbb{b}}} = \left[ {\begin{array}{*{20}c} \mathop{{{\mathbb{P}}}_{1}}\limits^{\smile} &\quad \mathbf{0} \\ \mathbf{0} &\quad \mathop{{\mathbb{P}}_{2}}\limits^{\smile} \\ \end{array} } \right] \\ \end{aligned} $$
(83)

Also, the discretized form of \({\mathbf{E}}_{1}\), \({\mathbf{E}}_{2}\) is as follows:

$$ \begin{aligned} {\mathbb{E}}_{1} & = \left[\kern-0.15em\left[ {{\mathbf{E}}_{1} } \right]\kern-0.15em\right]_{{\mathfrak{B}}} = \left[ {\begin{array}{*{20}l} {\mathop {\varvec{\mathcal{D}}}\limits^{2d}}_{{X_{1} }} \hfill &\quad \mathbf{0} \hfill &\quad \mathbf{0} \hfill &\quad \mathbf{0} \hfill &\quad \mathbf{0} \hfill &\quad \mathbf{0} \hfill &\quad \mathbf{0} \hfill \\ {{\mathbf{X}}_{\mathbf{1}}^{*} } \hfill &\quad {{\mathbf{X}}_{1}^{*} {\mathop {\varvec{\mathcal{D}}}\limits^{2d}}_{{X_{2} }} /s} \hfill &\quad {{\mathbf{X}}_{\mathbf{1}}^{*} /t} \hfill &\quad \mathbf{0} \hfill &\quad \mathbf{0} \hfill &\quad \mathbf{0} \hfill &\quad \mathbf{0} \hfill \\ {{\mathbf{X}}_{\mathbf{1}}^{*} {\mathop {\varvec{\mathcal{D}}}\limits^{2d}}_{{X_{2} }} /s} \hfill &\quad {{\mathop {\varvec{\mathcal{D}}}\limits^{2d}}_{{X_{1} }} - {\mathbf{X}}_{1}^{*} } \hfill &\quad \mathbf{0} \hfill &\quad \mathbf{0} \hfill &\quad \mathbf{0} \hfill &\quad \mathbf{0} \hfill &\quad \mathbf{0} \hfill \\ \mathbf{0} \hfill &\quad \mathbf{0} \hfill &\quad \mathbf{0} \hfill &\quad {\mathop {\varvec{\mathcal{D}}}\limits^{2d}}_{{X_{1} }} \hfill &\quad \mathbf{0} \hfill &\quad \mathbf{0} \hfill &\quad \mathbf{0} \hfill \\ \mathbf{0} \hfill &\quad \mathbf{0} \hfill &\quad \mathbf{0} \hfill &\quad {{\mathbf{X}}_{\mathbf{1}}^{*} } \hfill &\quad {{\mathbf{X}}_{\mathbf{1}}^{*} {\mathop {\varvec{\mathcal{D}}}\limits^{2d}}_{{X_{2} }} /s} \hfill &\quad \mathbf{0} \hfill &\quad \mathbf{0} \hfill \\ \mathbf{0} \hfill &\quad \mathbf{0} \hfill &\quad \mathbf{0} \hfill &\quad {{\mathbf{X}}_{\mathbf{1}}^{*} {\mathop {\varvec{\mathcal{D}}}\limits^{2d}}_{{X_{2} }} /s} \hfill &\quad {{\mathop {\varvec{\mathcal{D}}}\limits^{2d}}_{{X_{1} }} - {\mathbf{X}}_{\mathbf{1}}^{*} } \hfill &\quad \mathbf{0} \hfill &\quad \mathbf{0} \hfill \\ \mathbf{0} \hfill &\quad \mathbf{0} \hfill &\quad \mathbf{0} \hfill &\quad {\mathop {\varvec{\mathcal{D}}}\limits^{2d}}_{{X_{1} }} \hfill &\quad \mathbf{0} \hfill &\quad {\mathop {\varvec{\mathcal{D}}}\limits^{2d}}_{{X_{1} }} \hfill &\quad \mathbf{0} \hfill \\ \mathbf{0} \hfill &\quad \mathbf{0} \hfill &\quad \mathbf{0} \hfill &\quad {{\mathbf{X}}_{\mathbf{1}}^{*} } \hfill &\quad {{\mathbf{X}}_{\mathbf{1}}^{*} {\mathop {\varvec{\mathcal{D}}}\limits^{2d}}_{{X_{2} }} /s} \hfill &\quad {{\mathbf{X}}_{\mathbf{1}}^{*} } \hfill &\quad {\left( {{\mathbf{X}}_{\mathbf{1}}^{*} } \right)^{ \circ 2} {\mathop {\varvec{\mathcal{D}}}\limits^{2d}}_{{X_{2} }} /s^{2} } \hfill \\ \mathbf{0} \hfill &\quad \mathbf{0} \hfill &\quad \mathbf{0} \hfill &\quad {{\mathbf{X}}_{\mathbf{1}}^{*} {\mathop {\varvec{\mathcal{D}}}\limits^{2d}}_{{X_{2} }} /s} \hfill &\quad {{\mathop {\varvec{\mathcal{D}}}\limits^{2d}}_{{X_{1} }} - {\mathbf{X}}_{\mathbf{1}}^{*} } \hfill &\quad {{\mathbf{X}}_{\mathbf{1}}^{*} {\mathop {\varvec{\mathcal{D}}}\limits^{2d}}_{{X_{2} }} /s} \hfill &\quad {{\mathbf{X}}_{\mathbf{1}}^{*} {\mathop {\varvec{\mathcal{D}}}\limits^{2d}}_{{X_{1} }} /s - 2{\mathbf{X}}_{\mathbf{1}}^{*} /s} \hfill \\ \end{array} } \right] \\ {\mathbb{E}}_{2} &\quad = \left[\kern-0.15em\left[ {{\mathbf{E}}_{2} } \right]\kern-0.15em\right]_{{\mathfrak{B}}} = \left[ {\begin{array}{*{20}c} \mathbf{0} &\quad \mathbf{0} &\quad \mathbf{0} &\quad {{\mathbf{I}}_{n} } &\quad \mathbf{0} &\quad {{\mathbf{I}}_{n} } &\quad \mathbf{0} \\ \mathbf{0} &\quad { - {\mathbf{X}}_{\mathbf{1}}^{*} /t} &\quad \mathbf{0} &\quad \mathbf{0} &\quad {{\mathbf{I}}_{n} } &\quad \mathbf{0} &\quad {{\mathbf{X}}_{\mathbf{1}}^{*} / s} \\ \mathbf{0} &\quad \mathbf{0} &\quad \mathbf{0} &\quad {{\mathbf{I}}_{n} } &\quad \mathbf{0} &\quad {{\mathbf{I}}_{n} } &\quad \mathbf{0} \\ \mathbf{0} &\quad \mathbf{0} &\quad \mathbf{0} &\quad \mathbf{0} &\quad {{\mathbf{I}}_{n} } &\quad \mathbf{0} &\quad {{\mathbf{X}}_{1}^{*} / s} \\ \end{array} } \right], \\ \end{aligned} $$
(84)

in which \({\mathop {\varvec{\mathcal{D}}}\limits^{2d}}_{{X_{1} }}\) and \({\mathop {\varvec{\mathcal{D}}}\limits^{2d}}_{{X_{2} }}\) denote the 2-D differentiation operators in \(X_{1}\) and \(X_{2}\) directions, respectively [26, 32, 33].

1.5 Stress tensor

Discretizing Eqs. (34) and (55) leads to

$$ \begin{aligned} {\mathbf{Q}}_{\mathbf{11}} & = {\mathbf{Q}}_{\mathbf{22}} = \left[\kern-0.15em\left[{Q_{11} } \right]\kern-0.15em\right]_{{{\mathfrak{A}}_{3} }} = {\mathbb{E}}_{C} \circ \left( {1 - \overline{\overline{\nu }}_{C}^{ \circ 2} } \right)^{ \circ - 1} , \\ {\mathbf{Q}}_{\mathbf{12}} & = {\mathbf{Q}}_{\mathbf{21}} = \left[\kern-0.15em\left[{Q_{12} } \right]\kern-0.15em\right]_{{{\mathfrak{A}}_{3} }} = \overline{\overline{\nu }}_{C} \circ {\mathbb{E}}_{C} \circ \left( {1 - \overline{\overline{\nu }}_{C}^{ \circ 2} } \right)^{ \circ - 1} , \\ {\mathbf{Q}}_{\mathbf{44}} & = {\mathbf{Q}}_{\mathbf{55}} = {\mathbf{Q}}_{\mathbf{66}} = \left[\kern-0.15em\left[{{\text{Q}}_{66}}\right]\kern-0.15em\right]_{{{\mathfrak{A}}_{3} }} = \frac{1}{2}{\mathbb{E}}_{C} \circ \left( {1 + \overline{\overline{\nu }}_{C} } \right)^{ \circ - 1} , \\ \end{aligned} $$
(85)
$$ \begin{aligned} {\hat{\mathbb{C}}}_{1} & = \left[\kern-0.15em\left[{{\hat{\mathbf{C}}}_{1}}\right]\kern-0.15em\right]_{{{\mathfrak{A}}_{3} }} = \left[ {\begin{array}{*{20}c} {{\mathbf{Q}}_{\mathbf{11}} } &\quad {{\mathbf{Q}}_{\mathbf{12}} } &\quad \mathbf{0} \\ {{\mathbf{Q}}_{\mathbf{21}} } &\quad {{\mathbf{Q}}_{\mathbf{22}} } &\quad \mathbf{0} \\ \mathbf{0} &\quad \mathbf{0} &\quad {{\mathbf{Q}}_{\mathbf{66}} } \\ \end{array} } \right], \\ {\hat{\mathbb{C}}}_{2} &\quad = \left[\kern-0.15em\left[{{\hat{\mathbf{C}}}_{2}} \right]\kern-0.15em\right]_{{{\mathfrak{A}}_{3} }} = \left[ {\begin{array}{*{20}c} {{\mathbf{Q}}_{\mathbf{55}} } &\quad \mathbf{0} \\ \mathbf{0} &\quad {{\mathbf{Q}}_{\mathbf{44}} } \\ \end{array} } \right], \\ {\hat{\mathbb{C}}} &\quad = \left[\kern-0.15em\left[{{\hat{\mathbf{C}}}}\right]\kern-0.15em\right]_{{{\mathfrak{A}}_{3} }} = \left[ {\begin{array}{*{20}c} {{\hat{\mathbb{C}}}_{1} } &\quad \mathbf{0} \\ \mathbf{0} &\quad {{\hat{\mathbb{C}}}_{2} } \\ \end{array} } \right], \\ \end{aligned} $$
(86)

The each-block-diagonal form of \({\hat{\mathbb{C}}}_{1}\), \({\hat{\mathbb{C}}}_{2}\) and \({\hat{\mathbb{C}}}\) can be defined as follows:

$$ \begin{aligned} \mathop{{\hat{\mathbb{C}}}_{1}}\limits^{\smile} & = \left\langle {\left[\kern-0.15em\left[ {{\hat{\mathbf{C}}}_{1}}\right]\kern-0.15em\right]}_{{\mathfrak{A}}_{3}}\right\rangle_ {\mathbb{b}} = \left[ {\begin{array}{*{20}c} \langle{{\mathbf{Q}}_{\mathbf{11}} }\rangle &\quad \langle{{\mathbf{Q}}_{\mathbf{12}}}\rangle &\quad \mathbf{0} \\ \langle{{\mathbf{Q}}_{\mathbf{21}}}\rangle &\quad {{\mathbf{Q}}_{\mathbf{22}} } &\quad \mathbf{0} \\ \mathbf{0} &\quad \mathbf{0} &\quad \langle{{\mathbf{Q}}_{\mathbf{66}}}\rangle \\ \end{array} } \right], \\ \mathop{{\hat{\mathbb{C}}}_{2}}\limits^{\smile} &\quad = \left\langle {\left[\kern-0.15em\left[ {{\hat{\mathbf{C}}}_{2} } \right]\kern-0.15em\right]}_{{\mathfrak{A}}_{3}}\right\rangle_{\mathbb{b}} = \left[ {\begin{array}{*{20}c} \langle{{\mathbf{Q}}_{\mathbf{55}}}\rangle &\quad \mathbf{0} \\ \mathbf{0} &\quad \langle{{\mathbf{Q}}_{44}}\rangle \\ \end{array} } \right], \\ \mathop{\hat{\mathbb{C}}}\limits^{\smile} &\quad = \left\langle {\left[\kern-0.15em\left[ {{\hat{\mathbf{C}}}} \right]\kern-0.15em\right]}_{{\mathfrak{A}}_{3}}\right\rangle_{\mathbb{b}} = \left[ {\begin{array}{*{20}c} \mathop{{\hat{\mathbb{C}}}_{1}}\limits^{\smile} &\quad \mathbf{0} \\ \mathbf{0} &\quad \mathop{{\hat{\mathbb{C}}}_{2}}\limits^{\smile} \\ \end{array} } \right], \\ \end{aligned} $$
(87)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, R., Hassani, R., Hasrati, E. et al. A numerical study on the free vibrations of nanocomposite conical panels with variously shaped cutout. Eur. Phys. J. Plus 136, 687 (2021). https://doi.org/10.1140/epjp/s13360-021-01405-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01405-z

Navigation