Skip to main content
Log in

Elastic foundation effects on dynamic characteristics of agglomerated hybrid laminated truncated conical nanocomposite panels and shells

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The study explores the free vibration characteristics of hybrid laminated nanocomposite truncated conical shells and panels incorporating functionally graded graphene platelet-reinforced (FG-GPLs) and functionally graded carbon nanotube-reinforced (FG-CNTs) materials, advancing understanding in hybrid material applications. The structures are assumed to be supported by a two-parameter elastic foundation, and the study also considers the influence of CNT agglomeration. The estimation of CNT agglomeration effect is performed using a two-parameter agglomeration model based on the Mori–Tanaka approach, considering the random orientation of carbon nanotubes. By employing a combination of various control parameters, it becomes possible to determine the optimal mode for setting the natural frequency of the system. To ensure accurate calculations for both thin and thick shells, a third-order shear deformation theory is employed. The governing equations and boundary conditions are formulated based on Hamilton's principle. Numerical solutions are obtained through the systematic differential quadrature method, wherein the Kronecker delta function is employed. By introducing subtle adjustments to the governing equations, this method effectively minimizes computational volume and complexity, proving particularly advantageous for addressing problems characterized by higher degrees of freedom. To estimate the effective mechanical properties of the CNT-reinforced nanocomposite layers, the rule of mixtures is employed. Meanwhile, the Halpin–Tsai micromechanical model is utilized for calculating the properties of the GPL-reinforced nanocomposite layers. The presented study establishes convergence and accuracy through evaluation, considering various parameters such as CNTs volume fraction, GPLs mass fraction, different distribution patterns, different geometries under various boundary conditions, vertex angle of the cone, agglomeration characteristics of CNTs, and different stiffness of the elastic foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Carbon Nanotube Strengthened Composites.

References

  1. Sobhani, E., Masoodi, A.R., Ahmadi-Pari, A.R.: Vibration of FG-CNT and FG-GNP sandwich composite coupled conical–cylindrical–conical shell. Compos. Struct.Struct. 273, 114281 (2021)

    Google Scholar 

  2. Jen, Y.-M., Huang, J.-C.: Synergistic effect on the thermomechanical and electrical properties of epoxy composites with the enhancement of carbon nanotubes and graphene nano platelets. Materials 12(2), 255 (2019)

    Google Scholar 

  3. Hadden, C.M., et al.: Mechanical properties of graphene nanoplatelet/carbon fiber/epoxy hybrid composites: Multiscale modeling and experiments. Carbon 95, 100–112 (2015)

    Google Scholar 

  4. Hirwani, C.K., Mishra, P.K., Panda, S.K.: Nonlinear steady-state responses of weakly bonded composite shell structure under hygro-thermo-mechanical loading. Compos. Struct.Struct. 265, 113768 (2021)

    Google Scholar 

  5. Ladani, R.: Composites with aligned carbon nano-reinforcements: synergistically improving the damage tolerance and detection (2016)

  6. Sgobba, V., Guldi, D.M.: Carbon nanotubes—electronic/electrochemical properties and application for nanoelectronics and photonics. Chem. Soc. Rev. 38(1), 165–184 (2009)

    Google Scholar 

  7. Shen, H.-S.: Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos. Struct.Struct. 91(1), 9–19 (2009)

    Google Scholar 

  8. Yas, M., Heshmati, M.: Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load. Appl. Math. Model. 36(4), 1371–1394 (2012)

    MathSciNet  Google Scholar 

  9. Roham, R., Reza, M.M.: Simulation of impact and post-impac behavior of carbon nanotube reinforced polymer using multi-scale finite element modeling. Comput. Mater. Sci.. Mater. Sci. 63, 261–268 (2012)

    Google Scholar 

  10. Shen, H.-S., Xiang, Y.: Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments. Eng. Struct.Struct. 56, 698–708 (2013)

    Google Scholar 

  11. Khalili, S., Haghbin, A.: Investigation on design parameters of single-walled carbon nanotube reinforced nanocomposites under impact loads. Compos. Struct.Struct. 98, 253–260 (2013)

    Google Scholar 

  12. Lei, Z., Zhang, L., Liew, K.: Elastodynamic analysis of carbon nanotube-reinforced functionally graded plates. Int. J. Mech. Sci. 99, 208–217 (2015)

    Google Scholar 

  13. Moradi-Dastjerdi, R., Foroutan, M., Pourasghar, A.: Dynamic analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotube by a mesh-free method. Mater. Des. 44, 256–266 (2013)

    Google Scholar 

  14. Rezaiee-Pajand, M., Sobhani, E., Masoodi, A.R.: Free vibration analysis of functionally graded hybrid matrix/fiber nanocomposite conical shells using multiscale method. Aerosp. Sci. Technol.. Sci. Technol. 105, 105998 (2020)

    Google Scholar 

  15. Allen, M.J., Tung, V.C., Kaner, R.B.: Honeycomb carbon: a review of graphene. Chem. Rev. 110(1), 132–145 (2010)

    Google Scholar 

  16. Miranda, R., de Parga, A.L.V.: Surfing ripples towards new devices. Nat. Nanotechnol.Nanotechnol. 4(9), 549–550 (2009)

    Google Scholar 

  17. Fu, T., Wu, X., Xiao, Z., Chen, Z.: Dynamic instability analysis of FG-CNTRC laminated conical shells surrounded by elastic foundations within FSDT. Eur. J. Mech. A. Solids 85, 104139 (2021)

    MathSciNet  Google Scholar 

  18. Moghadam, H.Z., Faghidian, S.A., Jamal-Omidi, M.: Agglomeration effects of carbon nanotube on residual stresses in polymer nano composite using experimental and analytical method. Mater. Res. Express 6(3), 035009 (2018)

    Google Scholar 

  19. Tavakoli Maleki, A., Pourseifi, M., Zakeri, M.: Effect of agglomeration of the nanotubes on the vibration frequency of the multi-scale hybrid nanocomposite conical shells: a GDQ-based study. Waves Random Complex Media 32(1), 359–380 (2022)

    MathSciNet  Google Scholar 

  20. Arani, A.G., Kiani, F., Afshari, H.: Free and forced vibration analysis of laminated functionally graded CNT-reinforced composite cylindrical panels. J. Sandwich Struct. Mater.Struct. Mater. 23(1), 255–278 (2021)

    Google Scholar 

  21. Ebrahimi, F., Dabbagh, A.: Vibration analysis of fluid-conveying multi-scale hybrid nanocomposite shells with respect to agglomeration of nanofillers. Def. Technol. 17(1), 212–225 (2021)

    Google Scholar 

  22. Mudhaffar, I.M., et al.: Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation. In: Structures. Elsevier (2021)

  23. Bouafia, K., et al.: Bending and free vibration characteristics of various compositions of FG plates on elastic foundation via quasi 3D HSDT model. Steel Compos. Struct. Int. J. 41(4), 487–503 (2021)

    Google Scholar 

  24. Bounouara, F., et al.: Effect of visco-Pasternak foundation on thermo-mechanical bending response of anisotropic thick laminated composite plates. Steel Compos. Struct.Struct. 47, 693–707 (2023)

    Google Scholar 

  25. Belbachir, N., et al.: A refined quasi-3D theory for stability and dynamic investigation of cross-ply laminated composite plates on Winkler–Pasternak foundation. Struct. Eng. Mech.. Eng. Mech. 85(4), 433 (2023)

    Google Scholar 

  26. Tahir, S.I., et al.: The effect of three-variable viscoelastic foundation on the wave propagation in functionally graded sandwich plates via a simple quasi-3D HSDT. Steel Compos. Struct.Struct. 42(4), 501 (2022)

    Google Scholar 

  27. Zaitoun, M.W., et al.: Influence of the visco-Pasternak foundation parameters on the buckling behavior of a sandwich functional graded ceramic–metal plate in a hygrothermal environment. Thin-Walled Struct. 170, 108549 (2022)

    Google Scholar 

  28. Singh, S.D., Sahoo, R.: Analytical solution for static and free vibration analysis of functionally graded CNT-reinforced sandwich plates. Arch. Appl. Mech. 91(9), 3819–3834 (2021)

    Google Scholar 

  29. Alsubaie, A.M., et al.: Porosity-dependent vibration investigation of functionally graded carbon nanotube-reinforced composite beam. Comput. Concr.. Concr. 32(1), 75–85 (2023)

    Google Scholar 

  30. Zhang, Y.-W., Ding, H.-X., She, G.-L., Tounsi, A.: Wave propagation of CNTRC beams resting on elastic foundation based on various higher-order beam theories. Geomech. Eng. 33(4), 381–391 (2023)

    Google Scholar 

  31. Tounsi, A., et al.: Influences of different boundary conditions and hygro-thermal environment on the free vibration responses of FGM sandwich plates resting on viscoelastic foundation. Int J Struct. Stab. Dyn. 2450117 (2023)

  32. Tounsi, A., et al.: Free vibration investigation of functionally graded plates with temperaturedependent properties resting on a viscoelastic foundation. Struct. Eng. Mech.. Eng. Mech. 86(1), 1 (2023)

    Google Scholar 

  33. Mudhaffar, I.M., et al.: Impact of viscoelastic foundation on bending behavior of FG plate subjected to hygro-thermo-mechanical loads. Struct. Eng. Mech.. Eng. Mech. 86(2), 167 (2023)

    Google Scholar 

  34. Bennedjadi, M., et al.: Visco-elastic foundation effect on buckling response of exponentially graded sandwich plates under various boundary conditions. Geomech. Eng. 32(2), 159 (2023)

    Google Scholar 

  35. Zaitoun, M.W., et al.: An efficient computational model for vibration behavior of a functionally graded sandwich plate in a hygrothermal environment with viscoelastic foundation effects. Eng. Comput.Comput. 39(2), 1127–1141 (2023)

    Google Scholar 

  36. Liu, G., et al.: Dynamics of imperfect inhomogeneous nanoplate with exponentially-varying properties resting on viscoelastic foundation. Eur. J. Mech. A. Solids 95, 104649 (2022)

    MathSciNet  Google Scholar 

  37. Dat, N.D., Khoa, N.D., Nguyen, P.D., Duc, N.D.: An analytical solution for nonlinear dynamic response and vibration of FG-CNT reinforced nanocomposite elliptical cylindrical shells resting on elastic foundations. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 100(1), e201800238 (2020)

    MathSciNet  Google Scholar 

  38. Vo-Duy, T., Ho-Huu, V., Nguyen-Thoi, T.: Free vibration analysis of laminated FG-CNT reinforced composite beams using finite element method. Front. Struct. Civ. Eng.Struct. Civ. Eng. 13(2), 324–336 (2019)

    Google Scholar 

  39. Feng, C., Kitipornchai, S., Yang, J.: Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs). Eng. Struct.Struct. 140, 110–119 (2017)

    Google Scholar 

  40. Han, Y., Elliott, J.: Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput. Mater. Sci.. Mater. Sci. 39(2), 315–323 (2007)

    Google Scholar 

  41. Safarpour, M., Forooghi, A., Dimitri, R., Tornabene, F.: Theoretical and numerical solution for the bending and frequency response of graphene reinforced nanocomposite rectangular plates. Appl. Sci. 11(14)

  42. Guo, H., Cao, S., Yang, T., Chen, Y.: Geometrically nonlinear analysis of laminated composite quadrilateral plates reinforced with graphene nanoplatelets using the element-free IMLS-Ritz method. Compos. B Eng. 154, 216–224 (2018)

    Google Scholar 

  43. Abedini Baghbadorani, A., Kiani, Y.: Free vibration analysis of functionally graded cylindrical shells reinforced with graphene platelets. Compos. Struct.Struct. 276, 1145 (2021)

    Google Scholar 

  44. Shi, D.-L., et al.: The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites. J. Eng. Mater. Technol. 126(3), 250–257 (2004)

    Google Scholar 

  45. Tornabene, F., Fantuzzi, N., Bacciocchi, M., Viola, E.: Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells. Compos. B Eng. 89, 187–218 (2016)

    Google Scholar 

  46. Noor, A.K., Burton, W.S.: Assessment of shear deformation theories for multilayered composite plates (1989)

  47. Chauhan, M., et al.: Exponential functionally graded plates resting on Winkler-Pasternak foundation: free vibration analysis by dynamic stiffness method. Arch. Appl. Mech. 93(6), 2483–2509 (2023)

    Google Scholar 

  48. Gorbunov-Posadov, M.I., Malikova, T.J.A., Solomin, V.I.: Rasčet konstrukcij na uprugom osnovanii: calculation of structures on elastic foundation. Strojizdat (1984)

  49. Sharifi, P., Shojaee, M., Salighe, S.: Vibration of rotating porous nanocomposite eccentric semi-annular and annular plates in uniform thermal environment using TDQM. Arch. Appl. Mech. 93(4), 1579–1604 (2023)

    Google Scholar 

  50. Yang, J., Chen, D., Kitipornchai, S.: Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method. Compos. Struct.Struct. 193, 281–294 (2018)

    Google Scholar 

  51. Zhao, J., et al.: Free vibration analysis of functionally graded carbon nanotube reinforced composite truncated conical panels with general boundary conditions. Compos. B Eng. 160, 225–240 (2019)

    Google Scholar 

  52. Wu, H., Yang, J., Kitipornchai, S.: Parametric instability of thermo-mechanically loaded functionally graded graphene reinforced nanocomposite plates. Int. J. Mech. Sci. 135, 431–440 (2018)

    Google Scholar 

  53. Maurya, M.C., Jawaid, S., Chakrabarti, A.: Free vibration response of agglomerated carbon nanotube-reinforced nanocomposite plates. Mech. Adv. Compos. Struct. 10(1), 167–194 (2023)

    Google Scholar 

  54. Odegard, G., et al.: Constitutive modeling of nanotube–reinforced polymer composites. Compos. Sci. Technol. 63(11), 1671–1687 (2003)

    Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Ebrahimi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

$$ \begin{aligned} & (\delta v):\left( {\frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22} + \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{66} } \right)\frac{\partial u}{{\partial \theta }} + \left( {\frac{1}{r\left( s \right)}H_{12} + \frac{1}{r\left( s \right)}H_{66} } \right)\frac{{\partial^{2} u}}{\partial s\,\partial \theta } \\ & \qquad + H_{66} \frac{{\partial^{2} v}}{{\partial s^{2} }} + \frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{66} \frac{\partial v}{{\partial s}} + \frac{1}{{r\left( s \right)^{2} }}H_{22} \frac{{\partial^{2} v}}{{\partial \theta^{2} }} \\ & \qquad + \left( { - \frac{{\cos^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{44} - \frac{{\sin^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{66} } \right)v + \left( {\frac{\cos \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22} + \frac{\cos \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{44} } \right)\frac{\partial w}{{\partial \theta }} \\ & \qquad + \left( {\frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{f} + \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{66}^{f} } \right)\frac{{\partial \varphi^{s} }}{\partial \theta } + \left( {\frac{1}{r\left( s \right)}H_{12}^{f} + \frac{1}{r\left( s \right)}H_{66}^{f} } \right)\frac{{\partial^{2} \varphi^{s} }}{\partial s\,\partial \theta } \\ & \qquad + \left( {\frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{g} + \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{66}^{g} } \right)\frac{{\partial \psi^{s} }}{\partial \theta } + \left( {\frac{1}{r\left( s \right)}H_{12}^{g} + \frac{1}{r\left( s \right)}H_{66}^{g} } \right)\frac{{\partial^{2} \psi^{s} }}{\partial s\,\partial \theta } \\ & \qquad + H_{66}^{f} \frac{{\partial^{2} \varphi^{\theta } }}{{\partial s^{2} }} + \frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{66}^{f} \frac{{\partial \varphi^{\theta } }}{\partial s} + \frac{1}{{r\left( s \right)^{2} }}H_{22}^{f} \frac{{\partial^{2} \varphi^{\theta } }}{{\partial \theta^{2} }} \\ & \qquad + \left( { - \frac{{\cos^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{44}^{f} + \frac{\cos \left( \alpha \right)}{{r\left( s \right)}}H_{44}^{{f^{\prime}}} - \frac{{\sin^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{66}^{f} } \right)\varphi^{\theta } + H_{66}^{g} \frac{{\partial^{2} \psi^{\theta } }}{{\partial s^{2} }} \\ & \qquad + \frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{66}^{g} \frac{{\partial \psi^{\theta } }}{\partial s} + \frac{1}{{r\left( s \right)^{2} }}H_{22}^{g} \frac{{\partial^{2} \psi^{\theta } }}{{\partial \theta^{2} }} \\ & \qquad + \left( { - \frac{{\cos^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{44}^{g} + \frac{\cos \left( \alpha \right)}{{r\left( s \right)}}H_{44}^{{g^{\prime}}} - \frac{{\sin^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{66}^{g} } \right)\psi^{\theta } \\ & \quad = {\text{I}}_{11} \frac{{\partial^{2} v}}{{\partial t^{2} }} + {\text{I}}_{f0} \frac{{\partial^{2} \varphi^{\theta } }}{{\partial t^{2} }} + {\text{I}}_{g0} \frac{{\partial^{2} \psi^{\theta } }}{{\partial t^{2} }} \\ \end{aligned} $$
(A.1)
$$ \begin{aligned} & (\delta w): - \frac{\cos \left( \alpha \right)}{{r\left( s \right)}}H_{12} \frac{\partial u}{{\partial s}} - \frac{\cos \left( \alpha \right)\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22} u \\ & \quad - \left( {\frac{\cos \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22} + \frac{\cos \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{44} } \right)\frac{\partial v}{{\partial \theta }} + H_{55} \frac{{\partial^{2} w}}{{\partial s^{2} }} + \frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{55} \frac{\partial w}{{\partial s}} \\ & \quad + \frac{1}{{r\left( s \right)^{2} }}H_{44} \frac{{\partial^{2} w}}{{\partial \theta^{2} }} - \frac{{\cos^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{22} w - \left( {\frac{\cos \left( \alpha \right)}{{r\left( s \right)}}H_{12}^{f} - H_{55}^{{f^{\prime}}} } \right)\frac{{\partial \varphi^{s} }}{\partial s} \\ & \quad - \left( {\frac{\cos \left( \alpha \right)\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{f} - \frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{55}^{{f^{\prime}}} } \right)\varphi^{s} - \left( {\frac{\cos \left( \alpha \right)}{{r\left( s \right)}}H_{12}^{g} - H_{55}^{{g^{\prime}}} } \right)\frac{{\partial \psi^{s} }}{\partial s} \\ & \quad - \left( {\frac{\cos \left( \alpha \right)\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{g} - \frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{55}^{{g^{\prime}}} } \right)\psi^{s} \\ & \quad - \left( {\frac{\cos \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{f} + \frac{\cos \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{44}^{f} - \frac{1}{r\left( s \right)}H_{44}^{{f^{\prime}}} } \right)\frac{{\partial \varphi^{\theta } }}{\partial \theta } \\ & \quad + \left( {\frac{\cos \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{g} + \frac{\cos \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{44}^{g} - \frac{1}{r\left( s \right)}H_{44}^{{g^{\prime}}} } \right)\frac{{\partial \psi^{\theta } }}{\partial \theta } \\ & \quad + K_{w} w - K_{G} \frac{{\partial^{2} w}}{{\partial s^{2} }} = {\text{I}}_{11} \frac{{\partial^{2} w}}{{\partial t^{2} }} \\ \end{aligned} $$
(A.2)
$$ \begin{aligned} & (\delta \varphi^{s} ):H_{11}^{f} \frac{{\partial^{2} u}}{{\partial s^{2} }} + \frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{11}^{f} \frac{\partial u}{{\partial s}} + \frac{1}{{r\left( s \right)^{2} }}H_{66}^{f} \frac{{\partial^{2} u}}{{\partial \theta^{2} }} - \frac{{\sin^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{22}^{f} u \\ & \quad + \left( { - \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{f} - \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{66}^{f} } \right)\frac{\partial v}{{\partial \theta }} + \left( {\frac{1}{r\left( s \right)}H_{12}^{f} + \frac{1}{r\left( s \right)}H_{66}^{f} } \right)\frac{{\partial^{2} v}}{\partial s\,\partial \theta } \\ & \quad + \left( {\frac{\cos \left( \alpha \right)}{{r\left( s \right)}}H_{12}^{f} - H_{55}^{{f^{\prime}}} } \right)\frac{\partial w}{{\partial s}} - \frac{\cos \left( \alpha \right)\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{f} w + H_{11}^{ff} \frac{{\partial^{2} \varphi^{s} }}{{\partial s^{2} }} \\ & \quad + \frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{11}^{ff} \frac{{\partial \varphi^{s} }}{\partial s} + \frac{1}{{r\left( s \right)^{2} }}H_{66}^{ff} \frac{{\partial^{2} \varphi^{s} }}{{\partial \theta^{2} }} + \left( { - \frac{{\sin^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{22}^{ff} - H_{55}^{{f^{\prime}f^{\prime}}} } \right)\varphi^{s} \\ & \quad + H_{11}^{fg} \frac{{\partial^{2} \psi^{s} }}{{\partial s^{2} }} + \frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{11}^{fg} \frac{{\partial \psi^{s} }}{\partial s} + \frac{1}{{r\left( s \right)^{2} }}H_{66}^{fg} \frac{{\partial^{2} \psi^{s} }}{{\partial \theta^{2} }} \\ & \quad + \left( { - \frac{{\sin^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{22}^{fg} - H_{55}^{{f^{\prime}g^{\prime}}} } \right)\psi^{s} + \left( { - \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{ff} - \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{66}^{ff} } \right)\frac{{\partial \varphi^{\theta } }}{\partial \theta } \\ & \quad + \left( {\frac{1}{r\left( s \right)}H_{12}^{ff} + \frac{1}{r\left( s \right)}H_{66}^{ff} } \right)\frac{{\partial^{2} \varphi^{\theta } }}{\partial s\,\partial \theta } + \left( { - \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{fg} - \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{66}^{fg} } \right)\frac{{\partial \psi^{\theta } }}{\partial \theta } \\ & \quad + \left( {\frac{1}{r\left( s \right)}H_{12}^{fg} + \frac{1}{r\left( s \right)}H_{66}^{fg} } \right)\frac{{\partial^{2} \psi^{\theta } }}{\partial s\,\partial \theta } = {\text{I}}_{f0} \frac{{\partial^{2} v}}{{\partial t^{2} }} + {\text{I}}_{ff} \frac{{\partial^{2} \varphi^{\theta } }}{{\partial t^{2} }} + {\text{I}}_{fg} \frac{{\partial^{2} \psi^{\theta } }}{{\partial t^{2} }} \\ \end{aligned} $$
(A.3)
$$ \begin{aligned} & (\delta \psi^{s} ):H_{11}^{g} \frac{{\partial^{2} u}}{{\partial s^{2} }} + \frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{11}^{g} \frac{\partial u}{{\partial s}} + \frac{1}{{r\left( s \right)^{2} }}H_{66}^{g} \frac{{\partial^{2} u}}{{\partial \theta^{2} }} - \frac{{\sin^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{22}^{g} u \\ & \quad + \left( { - \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{g} - \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{66}^{g} } \right)\frac{\partial v}{{\partial \theta }} + \left( {\frac{1}{r\left( s \right)}H_{12}^{g} + \frac{1}{r\left( s \right)}H_{66}^{g} } \right)\frac{{\partial^{2} v}}{\partial s\,\partial \theta } \\ & \quad + \left( {\frac{\cos \left( \alpha \right)}{{r\left( s \right)}}H_{12}^{g} - H_{55}^{{g^{\prime}}} } \right)\frac{\partial w}{{\partial s}} - \frac{\cos \left( \alpha \right)\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{g} w + H_{11}^{fg} \frac{{\partial^{2} \varphi^{s} }}{{\partial s^{2} }} \\ & \quad + \frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{11}^{fg} \frac{{\partial \varphi^{s} }}{\partial s} + \frac{1}{{r\left( s \right)^{2} }}H_{66}^{fg} \frac{{\partial^{2} \varphi^{s} }}{{\partial \theta^{2} }} + \left( { - \frac{{\sin^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{22}^{fg} - H_{55}^{{f^{\prime}g^{\prime}}} } \right)\varphi^{s} \\ & \quad + H_{11}^{gg} \frac{{\partial^{2} \psi^{s} }}{{\partial s^{2} }} + \frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{11}^{gg} \frac{{\partial \psi^{s} }}{\partial s} + \frac{1}{{r\left( s \right)^{2} }}H_{66}^{gg} \frac{{\partial^{2} \psi^{s} }}{{\partial \theta^{2} }} \\ & \quad + \left( { - \frac{{\sin^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{22}^{gg} - H_{55}^{{g^{\prime}g^{\prime}}} } \right)\psi^{s} + \left( { - \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{fg} - \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{66}^{fg} } \right)\frac{{\partial \varphi^{\theta } }}{\partial \theta } \\ & \quad + \left( {\frac{1}{r\left( s \right)}H_{12}^{fg} + \frac{1}{r\left( s \right)}H_{66}^{fg} } \right)\frac{{\partial^{2} \varphi^{\theta } }}{\partial s\,\partial \theta } + \left( { - \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{gg} - \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{66}^{gg} } \right)\frac{{\partial \psi^{\theta } }}{\partial \theta } \\ & \quad + \left( {\frac{1}{r\left( s \right)}H_{12}^{gg} + \frac{1}{r\left( s \right)}H_{66}^{gg} } \right)\frac{{\partial^{2} \psi^{\theta } }}{\partial s\,\partial \theta } = {\text{I}}_{g0} \frac{{\partial^{2} v}}{{\partial t^{2} }}{\text{ + I}}_{fg} \frac{{\partial^{2} \varphi^{\theta } }}{{\partial t^{2} }} + {\text{I}}_{gg} \frac{{\partial^{2} \psi^{\theta } }}{{\partial t^{2} }} \\ \end{aligned} $$
(A.4)
$$ \begin{aligned} & (\delta \varphi^{\theta } ):\left( {\frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{f} + \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{66}^{f} } \right)\frac{\partial u}{{\partial \theta }} + \left( {\frac{1}{r\left( s \right)}H_{12}^{f} + \frac{1}{r\left( s \right)}H_{66}^{f} } \right)\frac{{\partial^{2} u}}{\partial s\,\partial \theta } \\ & \qquad + H_{66}^{f} \frac{{\partial^{2} v}}{{\partial s^{2} }} + \frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{66}^{f} \frac{\partial v}{{\partial s}} + \frac{1}{{r\left( s \right)^{2} }}H_{22}^{f} \frac{{\partial^{2} v}}{{\partial \theta^{2} }} \\ & \qquad + \left( { - \frac{{\cos^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{44}^{f} + \frac{\cos \left( \alpha \right)}{{r\left( s \right)}}H_{44}^{{f^{\prime}}} - \frac{{\sin^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{66}^{f} } \right)v \\ & \qquad + \left( {\frac{\cos \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{f} + \frac{\cos \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{44}^{f} - \frac{1}{r\left( s \right)}H_{44}^{{f^{\prime}}} } \right)\frac{\partial w}{{\partial \theta }} \\ & \qquad + \left( {\frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{ff} + \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{66}^{ff} } \right)\frac{{\partial \varphi^{s} }}{\partial \theta } + \left( {\frac{1}{r\left( s \right)}H_{12}^{ff} + \frac{1}{r\left( s \right)}H_{66}^{ff} } \right)\frac{{\partial^{2} \varphi^{s} }}{\partial s\,\partial \theta } \\ & \qquad + \left( {\frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{fg} + \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{66}^{fg} } \right)\frac{{\partial \psi^{s} }}{\partial \theta } + \left( {\frac{1}{r\left( s \right)}H_{12}^{fg} + \frac{1}{r\left( s \right)}H_{66}^{fg} } \right)\frac{{\partial^{2} \psi^{s} }}{\partial s\,\partial \theta } \\ & \qquad + H_{66}^{ff} \frac{{\partial^{2} \varphi^{\theta } }}{{\partial s^{2} }} + \frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{66}^{ff} \frac{{\partial \varphi^{\theta } }}{\partial s} + \frac{1}{{r\left( s \right)^{2} }}H_{22}^{ff} \frac{{\partial^{2} \varphi^{\theta } }}{{\partial \theta^{2} }} \\ & \qquad + \left( { - \frac{{\cos^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{44}^{ff} + \frac{2\cos \left( \alpha \right)}{{r\left( s \right)}}H_{44}^{{ff^{\prime}}} - H_{44}^{{f^{\prime}f^{\prime}}} - \frac{{\sin^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{66}^{ff} } \right)\varphi^{\theta } \\ & \qquad + H_{66}^{fg} \frac{{\partial^{2} \psi^{\theta } }}{{\partial s^{2} }} + \frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{66}^{fg} \frac{{\partial \psi^{\theta } }}{\partial s} + \frac{1}{{r\left( s \right)^{2} }}H_{22}^{fg} \frac{{\partial^{2} \psi^{\theta } }}{{\partial \theta^{2} }} \\ & \qquad + \left( { - \frac{{\cos^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{44}^{fg} + \frac{\cos \left( \alpha \right)}{{r\left( s \right)}}H_{44}^{{gf^{\prime}}} + \frac{\cos \left( \alpha \right)}{{r\left( s \right)}}H_{44}^{{fg^{\prime}}} - H_{44}^{{f^{\prime}g^{\prime}}} - \frac{{\sin^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{66}^{fg} } \right)\psi^{\theta } \\ & \quad = {\text{I}}_{f0} \frac{{\partial^{2} u}}{{\partial t^{2} }}{\text{ + I}}_{ff} \frac{{\partial^{2} \varphi^{s} }}{{\partial t^{2} }} + {\text{I}}_{fg} \frac{{\partial^{2} \psi^{s} }}{{\partial t^{2} }} \\ \end{aligned} $$
(A.5)
$$ \begin{aligned} & (\delta \psi^{\theta } ):\left( {\frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{g} + \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{66}^{g} } \right)\frac{\partial u}{{\partial \theta }} + \left( {\frac{1}{r\left( s \right)}H_{12}^{g} + \frac{1}{r\left( s \right)}H_{66}^{g} } \right)\frac{{\partial^{2} u}}{\partial s\,\partial \theta } \\ & \qquad + H_{66}^{g} \frac{{\partial^{2} v}}{{\partial s^{2} }} + \frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{66}^{g} \frac{\partial v}{{\partial s}} + \frac{1}{{r\left( s \right)^{2} }}H_{22}^{g} \frac{{\partial^{2} v}}{{\partial \theta^{2} }} \\ & \qquad + \left( { - \frac{{\cos^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{44}^{g} + \frac{\cos \left( \alpha \right)}{{r\left( s \right)}}H_{44}^{{g^{\prime}}} - \frac{{\sin^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{66}^{g} } \right)v \\ & \qquad + \left( {\frac{\cos \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{g} + \frac{\cos \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{44}^{g} - \frac{1}{r\left( s \right)}H_{44}^{{g^{\prime}}} } \right)\frac{\partial w}{{\partial \theta }} \\ & \qquad + \left( {\frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{fg} + \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{66}^{fg} } \right)\frac{{\partial \varphi^{s} }}{\partial \theta } + \left( {\frac{1}{r\left( s \right)}H_{12}^{fg} + \frac{1}{r\left( s \right)}H_{66}^{fg} } \right)\frac{{\partial^{2} \varphi^{s} }}{\partial s\,\partial \theta } \\ & \qquad + \left( {\frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{gg} + \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{66}^{gg} } \right)\frac{{\partial \psi^{s} }}{\partial \theta } + \left( {\frac{1}{r\left( s \right)}H_{12}^{gg} + \frac{1}{r\left( s \right)}H_{66}^{gg} } \right)\frac{{\partial^{2} \psi^{s} }}{\partial s\,\partial \theta } \\ & \qquad + H_{66}^{fg} \frac{{\partial^{2} \varphi^{\theta } }}{{\partial s^{2} }} + \frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{66}^{fg} \frac{{\partial \varphi^{\theta } }}{\partial s} + \frac{1}{{r\left( s \right)^{2} }}H_{22}^{fg} \frac{{\partial^{2} \varphi^{\theta } }}{{\partial \theta^{2} }} \\ & \qquad + \left( { - \frac{{\cos^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{44}^{fg} + \frac{\cos \left( \alpha \right)}{{r\left( s \right)}}H_{44}^{{gf^{\prime}}} + \frac{\cos \left( \alpha \right)}{{r\left( s \right)}}H_{44}^{{fg^{\prime}}} - H_{44}^{{f^{\prime}g^{\prime}}} - \frac{{\sin^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{66}^{fg} } \right)\varphi^{\theta } \\ & \qquad + H_{66}^{gg} \frac{{\partial^{2} \psi^{\theta } }}{{\partial s^{2} }} + \frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{66}^{gg} \frac{{\partial \psi^{\theta } }}{\partial s} + \frac{1}{{r\left( s \right)^{2} }}H_{22}^{gg} \frac{{\partial^{2} \psi^{\theta } }}{{\partial \theta^{2} }} \\ & \qquad + \left( { - \frac{{\cos^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{44}^{gg} + \frac{2\cos \left( \alpha \right)}{{r\left( s \right)}}H_{44}^{{gg^{\prime}}} - H_{44}^{{g^{\prime}g^{\prime}}} - \frac{{\sin^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{66}^{gg} } \right)\psi^{\theta } \\ & \quad = {\text{I}}_{g0} \frac{{\partial^{2} u}}{{\partial t^{2} }}{\text{ + I}}_{fg} \frac{{\partial^{2} \varphi^{s} }}{{\partial t^{2} }} + {\text{I}}_{gg} \frac{{\partial^{2} \psi^{s} }}{{\partial t^{2} }} \\ \end{aligned} $$
(A.6)

Appendix B

$$ \begin{aligned} & (\delta v):\sum\limits_{m = 1}^{{N_{\theta } }} {\sum\limits_{n = 1}^{{N_{s} }} {\left\{ {\left( {\frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } + \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{66} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } + \frac{1}{r\left( s \right)}H_{12} \tilde{A}_{jm}^{\theta } \tilde{A}_{{{\text{in}}}}^{s} } \right.} \right.} } \\ & \qquad + \left. {\frac{1}{r\left( s \right)}H_{66} \tilde{A}_{jm}^{\theta } \tilde{A}_{{{\text{in}}}}^{s} } \right)u_{nm} + \left( {\frac{1}{{r\left( s \right)^{2} }}H_{22} } \right.\delta_{{{\text{in}}}} \tilde{B}_{jm}^{\theta } - \frac{{\cos^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{44} \delta_{{{\text{in}}}} \delta_{jm} \\ & \qquad - \frac{{\sin^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{66} \delta_{{{\text{in}}}} \delta_{jm} + \left. {\frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{66} \delta_{jm} \tilde{A}_{{{\text{in}}}}^{s} + H_{66} \delta_{jm} \tilde{B}_{{{\text{in}}}}^{s} } \right)v_{nm} \\ & \qquad + \left( {\frac{\cos \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } \left. { + \frac{\cos \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{44} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } } \right)w_{nm} } \right. + \left( {\frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{f} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } } \right. \\ & \qquad + \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{66}^{f} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } + \frac{1}{r\left( s \right)}H_{12}^{f} \tilde{A}_{{{\text{in}}}}^{s} \tilde{A}_{jm}^{\theta } \left. { + \frac{1}{r\left( s \right)}H_{66}^{f} \tilde{A}_{{{\text{in}}}}^{s} \tilde{A}_{jm}^{\theta } } \right)\varphi_{nm}^{s} \\ & \qquad + \left( {\frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{g} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } + \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{66}^{g} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } + } \right.\frac{1}{r\left( s \right)}H_{12}^{g} \tilde{A}_{{{\text{in}}}}^{s} \tilde{A}_{jm}^{\theta } \\ & \qquad + \left. {\frac{1}{r\left( s \right)}H_{66}^{g} \tilde{A}_{{{\text{in}}}}^{s} \tilde{A}_{jm}^{\theta } } \right)\psi_{nm}^{s} + \left( { - \frac{{\cos^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{44}^{f} \delta_{{{\text{in}}}} \delta_{jm} + \frac{\cos \left( \alpha \right)}{{r\left( s \right)}}H_{44}^{{f^{\prime}}} \delta_{{{\text{in}}}} \delta_{jm} } \right. \\ & \qquad - \frac{{\sin^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{66}^{f} \delta_{{{\text{in}}}} \delta_{jm} + \frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{66}^{f} \delta_{jm} \tilde{A}_{{{\text{in}}}}^{s} \left. { + H_{66}^{f} \delta_{jm} \tilde{B}_{{{\text{in}}}}^{s} + \frac{1}{{r\left( s \right)^{2} }}H_{22}^{f} \delta_{{{\text{in}}}} \tilde{B}_{jm}^{\theta } } \right)\varphi_{nm}^{\theta } \\ & \qquad + \left( {\frac{1}{{r\left( s \right)^{2} }}H_{22}^{g} \delta_{{{\text{in}}}} \tilde{B}_{jm}^{\theta } } \right. - \frac{{\cos^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{44}^{g} \delta_{{{\text{in}}}} \delta_{jm} + \frac{\cos \left( \alpha \right)}{{r\left( s \right)}}H_{44}^{{g^{\prime}}} \delta_{{{\text{in}}}} \delta_{jm} \\ & \qquad - \left. {\frac{{\sin^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{66}^{g} \delta_{{{\text{in}}}} \delta_{jm} + \frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{66}^{g} \delta_{jm} \tilde{A}_{{{\text{in}}}}^{s} + H_{66}^{g} \delta_{jm} \tilde{B}_{{{\text{in}}}}^{s} } \right)\psi_{nm}^{\theta } \\ & \quad = {\text{I}}_{11} \frac{{\partial^{2} v_{ij} }}{{\partial t^{2} }}{\text{ + I}}_{f0} \frac{{\partial^{2} \varphi_{ij}^{\theta } }}{{\partial t^{2} }}{\text{ + I}}_{g0} \frac{{\partial^{2} \psi_{ij}^{\theta } }}{{\partial t^{2} }} \\ \end{aligned} $$
(B.1)
$$ \begin{aligned} & (\delta w):\sum\limits_{m = 1}^{{N_{\theta } }} {\sum\limits_{n = 1}^{{N_{s} }} {\left\{ {\left( { - \frac{\cos \left( \alpha \right)\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22} \delta_{{{\text{in}}}} \delta_{jm} \left. { - \frac{\cos \left( \alpha \right)}{{r\left( s \right)}}H_{12} \delta_{jm} \tilde{A}_{{{\text{in}}}}^{s} } \right)} \right.} \right.} } u_{nm} \\ & \quad + \left( { - \frac{\cos \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } \left. { - \frac{\cos \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{44} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } } \right)} \right.v_{nm} + \left( {\frac{1}{{r\left( s \right)^{2} }}H_{44} \delta_{{{\text{in}}}} \tilde{B}_{jm}^{\theta } } \right. \\ & \quad - \left. {\frac{{\cos^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{22} \delta_{{{\text{in}}}} \delta_{jm} + \frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{55} \delta_{jm} \tilde{A}_{{{\text{in}}}}^{s} + H_{55} \delta_{jm} \tilde{B}_{{{\text{in}}}}^{s} + K_{w} \delta_{{{\text{in}}}} \delta_{jm} - K_{G} \delta_{jm} \tilde{B}_{{{\text{in}}}}^{s} } \right)w_{nm} \\ & \quad + \left( {\frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{55}^{{f^{\prime}}} \delta_{{{\text{in}}}} \delta_{jm} - \frac{\cos \left( \alpha \right)\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{f} \delta_{{{\text{in}}}} \delta_{jm} } \right. + H_{55}^{{f^{\prime}}} \delta_{jm} \tilde{A}_{{{\text{in}}}}^{s} \\ & \quad - \left. {\frac{\cos \left( \alpha \right)}{{r\left( s \right)}}H_{12}^{f} \delta_{jm} \tilde{A}_{{{\text{in}}}}^{s} } \right)\varphi_{nm}^{s} + \left( {\frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{55}^{{g^{\prime}}} \delta_{{{\text{in}}}} \delta_{jm} - \frac{\cos \left( \alpha \right)\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{g} \delta_{{{\text{in}}}} \delta_{jm} } \right. \\ & \quad + H_{55}^{{g^{\prime}}} \delta_{jm} \tilde{A}_{{{\text{in}}}}^{s} \left. { - \frac{\cos \left( \alpha \right)}{{r\left( s \right)}}H_{12}^{g} \delta_{jm} \tilde{A}_{{{\text{in}}}}^{s} } \right)\psi_{nm}^{s} + \left( { - \frac{\cos \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{f} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } } \right. \\ & \quad - \frac{\cos \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{44}^{f} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } \left. { + \frac{1}{r\left( s \right)}H_{44}^{{f^{\prime}}} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } } \right)\varphi_{nm}^{\theta } + \left( { - \frac{\cos \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{g} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } } \right. \\ & \quad - \left. {\frac{\cos \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{44}^{g} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } \left. { + \frac{1}{r\left( s \right)}H_{44}^{{g^{\prime}}} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } } \right)\psi_{nm}^{\theta } } \right\} = {\text{I}}_{11} \frac{{\partial^{2} w_{ij} }}{{\partial t^{2} }} \\ \end{aligned} $$
(B.2)
$$ \begin{aligned} & (\delta \varphi^{s} ):\sum\limits_{m = 1}^{{N_{\theta } }} {\sum\limits_{n = 1}^{{N_{s} }} {\left\{ {\left( { - \frac{{\sin^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{22}^{f} \delta_{{{\text{in}}}} \delta_{jm} } \right.} \right.} } + \frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{11}^{f} \delta_{jm} \tilde{A}_{{{\text{in}}}}^{s} + H_{11}^{f} \delta_{jm} \tilde{B}_{{{\text{in}}}}^{s} \\ & \quad + \left. {\frac{1}{{r\left( s \right)^{2} }}H_{66}^{f} \delta_{{{\text{in}}}} \tilde{B}_{jm}^{\theta } } \right)u_{nm} + \left( { - \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{f} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } - \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{66}^{f} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } } \right. \\ & \quad + \left. {\frac{1}{r\left( s \right)}H_{12}^{f} \tilde{A}_{{{\text{in}}}}^{s} \tilde{A}_{jm}^{\theta } + \frac{1}{r\left( s \right)}H_{66}^{f} \tilde{A}_{{{\text{in}}}}^{s} \tilde{A}_{jm}^{\theta } } \right)v_{nm} + \left( { - \frac{\cos \left( \alpha \right)\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{f} \delta_{{{\text{in}}}} \delta_{jm} } \right. \\ & \quad + \left. {\frac{\cos \left( \alpha \right)}{{r\left( s \right)}}H_{12}^{f} \delta_{jm} \tilde{A}_{{{\text{in}}}}^{s} - H_{55}^{{f^{\prime}}} \delta_{jm} \tilde{A}_{{{\text{in}}}}^{s} } \right)w_{nm} + \left( { - \frac{{\sin^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{22}^{ff} \delta_{{{\text{in}}}} \delta_{jm} } \right. \\ & \quad - \left. {H_{55}^{{f^{\prime}f^{\prime}}} \delta_{{{\text{in}}}} \delta_{jm} + \frac{1}{{r\left( s \right)^{2} }}H_{66}^{ff} \delta_{{{\text{in}}}} \tilde{B}_{jm}^{\theta } + \frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{11}^{ff} \delta_{jm} \tilde{A}_{{{\text{in}}}}^{s} + H_{11}^{ff} \delta_{jm} \tilde{B}_{{{\text{in}}}}^{s} } \right)\varphi_{nm}^{s} \\ & \quad + \left( { - \frac{{\sin^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{22}^{fg} \delta_{{{\text{in}}}} \delta_{jm} - H_{55}^{{f^{\prime}g^{\prime}}} \delta_{{{\text{in}}}} \delta_{jm} } \right. + \frac{1}{{r\left( s \right)^{2} }}H_{66}^{fg} \delta_{{{\text{in}}}} \tilde{B}_{jm}^{\theta } \\ & \quad + \left. {\frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{11}^{fg} \delta_{jm} \tilde{A}_{{{\text{in}}}}^{s} + H_{11}^{fg} \delta_{jm} \tilde{B}_{{{\text{in}}}}^{s} } \right)\psi_{nm}^{s} + \left( { - \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{ff} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } } \right. \\ & \quad - \left. {\frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{66}^{ff} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } + \frac{1}{r\left( s \right)}H_{12}^{ff} \tilde{A}_{jm}^{\theta } \tilde{A}_{{{\text{in}}}}^{s} + \frac{1}{r\left( s \right)}H_{66}^{ff} \tilde{A}_{jm}^{\theta } \tilde{A}_{{{\text{in}}}}^{s} } \right)\varphi_{nm}^{\theta } \\ & \quad + \left( { - \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{fg} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } - \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{66}^{fg} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } } \right. + \frac{1}{r\left( s \right)}H_{12}^{fg} \tilde{A}_{jm}^{\theta } \tilde{A}_{{{\text{in}}}}^{s} \\ & \quad + \left. {\left. {\frac{1}{r\left( s \right)}H_{66}^{fg} \tilde{A}_{jm}^{\theta } \tilde{A}_{{{\text{in}}}}^{s} } \right)\psi_{nm}^{\theta } } \right\} = {\text{I}}_{f0} \frac{{\partial^{2} v_{ij} }}{{\partial t^{2} }}{\text{ + I}}_{ff} \frac{{\partial^{2} \varphi_{ij}^{\theta } }}{{\partial t^{2} }} + {\text{I}}_{fg} \frac{{\partial^{2} \psi_{ij}^{\theta } }}{{\partial t^{2} }} \\ \end{aligned} $$
(B.3)
$$ \begin{aligned} & (\delta \psi^{s} ):\sum\limits_{m = 1}^{{N_{\theta } }} {\sum\limits_{n = 1}^{{N_{s} }} {\left\{ {\left( { - \frac{{\sin^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{22}^{g} \delta_{{{\text{in}}}} \delta_{jm} } \right.} \right.} } + \frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{11}^{g} \delta_{jm} \tilde{A}_{{{\text{in}}}}^{s} + H_{11}^{g} \delta_{jm} \tilde{B}_{{{\text{in}}}}^{s} \\ & \quad + \left. {\frac{1}{{r\left( s \right)^{2} }}H_{66}^{g} \delta_{{{\text{in}}}} \tilde{B}_{jm}^{\theta } } \right)u_{nm} + \left( { - \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{g} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } - \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{66}^{g} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } } \right. \\ & \quad + \left. {\frac{1}{r\left( s \right)}H_{12}^{g} \tilde{A}_{{{\text{in}}}}^{s} \tilde{A}_{jm}^{\theta } + \frac{1}{r\left( s \right)}H_{66}^{g} \tilde{A}_{{{\text{in}}}}^{s} \tilde{A}_{jm}^{\theta } } \right)v_{nm} + \left( { - \frac{\cos \left( \alpha \right)\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{g} \delta_{{{\text{in}}}} \delta_{jm} } \right. \\ & \quad + \left. {\frac{\cos \left( \alpha \right)}{{r\left( s \right)}}H_{12}^{g} \delta_{jm} \tilde{A}_{{{\text{in}}}}^{s} - H_{55}^{{g^{\prime}}} \delta_{jm} \tilde{A}_{{{\text{in}}}}^{s} } \right)w_{nm} + \left( { - \frac{{\sin^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{22}^{fg} \delta_{{{\text{in}}}} \delta_{jm} } \right. \\ & \quad - \left. {H_{55}^{{f^{\prime}g^{\prime}}} \delta_{{{\text{in}}}} \delta_{jm} + \frac{1}{{r\left( s \right)^{2} }}H_{66}^{fg} \delta_{{{\text{in}}}} \tilde{B}_{jm}^{\theta } + \frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{11}^{fg} \delta_{jm} \tilde{A}_{{{\text{in}}}}^{s} + H_{11}^{fg} \delta_{jm} \tilde{B}_{{{\text{in}}}}^{s} } \right)\varphi_{nm}^{s} \\ & \quad + \left( { - \frac{{\sin^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{22}^{gg} \delta_{{{\text{in}}}} \delta_{jm} - H_{55}^{{g^{\prime}g^{\prime}}} \delta_{{{\text{in}}}} \delta_{jm} } \right. + \frac{1}{{r\left( s \right)^{2} }}H_{66}^{gg} \delta_{{{\text{in}}}} \tilde{B}_{jm}^{\theta } \\ & \quad + \left. {\frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{11}^{gg} \delta_{jm} \tilde{A}_{{{\text{in}}}}^{s} + H_{11}^{gg} \delta_{jm} \tilde{B}_{{{\text{in}}}}^{s} } \right)\psi_{nm}^{s} + \left( { - \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{fg} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } } \right. \\ & \quad - \left. {\frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{66}^{fg} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } + \frac{1}{r\left( s \right)}H_{12}^{fg} \tilde{A}_{jm}^{\theta } \tilde{A}_{{{\text{in}}}}^{s} + \frac{1}{r\left( s \right)}H_{66}^{fg} \tilde{A}_{jm}^{\theta } \tilde{A}_{{{\text{in}}}}^{s} } \right)\varphi_{nm}^{\theta } \\ & \quad + \left( { - \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{gg} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } - \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{66}^{gg} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } + \frac{1}{r\left( s \right)}H_{12}^{gg} \tilde{A}_{jm}^{\theta } \tilde{A}_{{{\text{in}}}}^{s} } \right. \\ & \quad + \left. {\left. {\frac{1}{r\left( s \right)}H_{66}^{gg} \tilde{A}_{jm}^{\theta } \tilde{A}_{{{\text{in}}}}^{s} } \right)\psi_{nm}^{\theta } } \right\} = {\text{I}}_{fg} \frac{{\partial^{2} \varphi_{ij}^{\theta } }}{{\partial t^{2} }}{\text{ + I}}_{g0} \frac{{\partial^{2} v_{ij} }}{{\partial t^{2} }}{\text{ + I}}_{gg} \frac{{\partial^{2} \psi_{ij}^{\theta } }}{{\partial t^{2} }} \\ \end{aligned} $$
(B.4)
$$ \begin{aligned} & (\delta \varphi^{\theta } ):\sum\limits_{m = 1}^{{N_{\theta } }} {\sum\limits_{n = 1}^{{N_{s} }} {\left\{ {\left( {\frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{f} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } + \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{66}^{f} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } } \right.} \right.} } \\ & \quad + \left. {\frac{1}{r\left( s \right)}H_{12}^{f} \tilde{A}_{{{\text{in}}}}^{s} \tilde{A}_{jm}^{\theta } + \frac{1}{r\left( s \right)}H_{66}^{f} \tilde{A}_{{{\text{in}}}}^{s} \tilde{A}_{jm}^{\theta } } \right)u_{nm} \\ & \quad + \left( { - \frac{{\cos^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{44}^{f} \delta_{{{\text{in}}}} \delta_{jm} + \frac{\cos \left( \alpha \right)}{{r\left( s \right)}}H_{44}^{{f^{\prime}}} \delta_{{{\text{in}}}} \delta_{jm} - \frac{{\sin^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{66}^{f} \delta_{{{\text{in}}}} \delta_{jm} } \right. \\ & \quad + \left. {\frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{66}^{f} \delta_{jm} \tilde{A}_{{{\text{in}}}}^{s} + H_{66}^{f} \delta_{jm} \tilde{B}_{{{\text{in}}}}^{s} + \frac{1}{{r\left( s \right)^{2} }}H_{22}^{f} \delta_{{{\text{in}}}} \tilde{B}_{jm}^{\theta } } \right)v_{nm} \\ & \quad + \left( {\frac{\cos \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{f} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } + \frac{\cos \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{44}^{f} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } } \right.\left. { - \frac{1}{r\left( s \right)}H_{44}^{{f^{\prime}}} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } } \right)w_{nm} \\ & \quad + \left( {\frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{ff} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } + \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{66}^{ff} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } + \frac{1}{r\left( s \right)}H_{12}^{ff} \tilde{A}_{jm}^{\theta } \tilde{A}_{in}^{s} } \right. \\ & \quad + \left. {\frac{1}{r\left( s \right)}H_{66}^{ff} \tilde{A}_{jm}^{\theta } \tilde{A}_{{{\text{in}}}}^{s} } \right)\varphi_{nm}^{s} + \left( {\frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{fg} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } + \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{66}^{fg} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } } \right. \\ & \quad + \left. {\frac{1}{r\left( s \right)}H_{12}^{fg} \tilde{A}_{jm}^{\theta } \tilde{A}_{{{\text{in}}}}^{s} + \frac{1}{r\left( s \right)}H_{66}^{fg} \tilde{A}_{jm}^{\theta } \tilde{A}_{{{\text{in}}}}^{s} } \right)\psi_{nm}^{s} + \left( { - \frac{{\cos^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{44}^{ff} \delta_{{{\text{in}}}} \delta_{jm} } \right. \\ & \quad + \frac{2\cos \left( \alpha \right)}{{r\left( s \right)}}H_{44}^{{ff^{\prime}}} \delta_{{{\text{in}}}} \delta_{jm} - H_{44}^{{f^{\prime}f^{\prime}}} \delta_{{{\text{in}}}} \delta_{jm} - \frac{{\sin^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{66}^{ff} \delta_{{{\text{in}}}} \delta_{jm} \\ & \quad + \left. {\frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{66}^{ff} \delta_{jm} \tilde{A}_{{{\text{in}}}}^{s} + H_{66}^{ff} \delta_{jm} \tilde{B}_{{{\text{in}}}}^{s} + \frac{1}{{r\left( s \right)^{2} }}H_{22}^{ff} \delta_{{{\text{in}}}} \tilde{B}_{jm}^{\theta } } \right)\varphi_{nm}^{\theta } \\ & \quad \left( { - \frac{{\cos^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{44}^{fg} \delta_{{{\text{in}}}} \delta_{jm} + \frac{\cos \left( \alpha \right)}{{r\left( s \right)}}H_{44}^{{gf^{\prime}}} \delta_{{{\text{in}}}} \delta_{jm} + \frac{\cos \left( \alpha \right)}{{r\left( s \right)}}H_{44}^{{fg^{\prime}}} \delta_{{{\text{in}}}} \delta_{jm} } \right. \\ & \quad - H_{44}^{{f^{\prime}g^{\prime}}} \delta_{{{\text{in}}}} \delta_{jm} - \frac{{\sin^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{66}^{fg} \delta_{{{\text{in}}}} \delta_{jm} + \frac{1}{{r\left( s \right)^{2} }}H_{22}^{fg} \delta_{{{\text{in}}}} \tilde{B}_{jm}^{\theta } \\ & \quad + \left. {\left. {\frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{66}^{fg} \delta_{jm} \tilde{A}_{{{\text{in}}}}^{s} + H_{66}^{fg} \delta_{jm} \tilde{B}_{{{\text{in}}}}^{s} } \right)\psi_{nm}^{\theta } } \right\} = {\text{I}}_{f0} \frac{{\partial^{2} u_{ij} }}{{\partial t^{2} }}{\text{ + I}}_{ff} \frac{{\partial^{2} \varphi_{ij}^{s} }}{{\partial t^{2} }}{\text{ + I}}_{fg} \frac{{\partial^{2} \psi_{ij}^{s} }}{{\partial t^{2} }} \\ \end{aligned} $$
(B.5)
$$ \begin{aligned} & (\delta \psi^{\theta } ):\sum\limits_{m = 1}^{{N_{\theta } }} {\sum\limits_{n = 1}^{{N_{s} }} {\left\{ {\left( {\frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{g} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } + \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{66}^{g} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } } \right.} \right.} } \\ & \qquad + \left. {\frac{1}{r\left( s \right)}H_{12}^{g} \tilde{A}_{{{\text{in}}}}^{s} \tilde{A}_{jm}^{\theta } + \frac{1}{r\left( s \right)}H_{66}^{g} \tilde{A}_{{{\text{in}}}}^{s} \tilde{A}_{jm}^{\theta } } \right)u_{nm} \\ & \qquad + \left( { - \frac{{\cos^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{44}^{g} \delta_{{{\text{in}}}} \delta_{jm} + \frac{\cos \left( \alpha \right)}{{r\left( s \right)}}H_{44}^{{g^{\prime}}} \delta_{{{\text{in}}}} \delta_{jm} - \frac{{\sin^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{66}^{g} \delta_{{{\text{in}}}} \delta_{jm} } \right. \\ & \qquad + \left. {\frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{66}^{g} \delta_{jm} \tilde{A}_{{{\text{in}}}}^{s} + H_{66}^{g} \delta_{jm} \tilde{B}_{in}^{s} + \frac{1}{{r\left( s \right)^{2} }}H_{22}^{g} \delta_{{{\text{in}}}} \tilde{B}_{jm}^{\theta } } \right)v_{nm} \\ & \qquad + \left( {\frac{\cos \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{g} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } + \frac{\cos \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{44}^{g} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } \left. { - \frac{1}{r\left( s \right)}H_{44}^{{g^{\prime}}} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } } \right)} \right.w_{nm} \\ & \qquad + \left( {\frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{fg} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } + \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{66}^{fg} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } } \right. + \frac{1}{r\left( s \right)}H_{12}^{fg} \tilde{A}_{jm}^{\theta } \tilde{A}_{{{\text{in}}}}^{s} \\ & \qquad + \left. {\frac{1}{r\left( s \right)}H_{66}^{fg} \tilde{A}_{jm}^{\theta } \tilde{A}_{{{\text{in}}}}^{s} } \right)\varphi_{nm}^{s} + \left( {\frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{22}^{gg} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } + \frac{\sin \left( \alpha \right)}{{r\left( s \right)^{2} }}H_{66}^{gg} \delta_{{{\text{in}}}} \tilde{A}_{jm}^{\theta } } \right. \\ & \qquad + \left. {\frac{1}{r\left( s \right)}H_{12}^{gg} \tilde{A}_{jm}^{\theta } \tilde{A}_{{{\text{in}}}}^{s} + \frac{1}{r\left( s \right)}H_{66}^{gg} \tilde{A}_{jm}^{\theta } \tilde{A}_{{{\text{in}}}}^{s} } \right)\psi_{nm}^{s} + \left( { - \frac{{\cos^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{44}^{fg} \delta_{{{\text{in}}}} \delta_{jm} } \right. \\ & \qquad \frac{\cos \left( \alpha \right)}{{r\left( s \right)}}H_{44}^{{gf^{\prime}}} \delta_{{{\text{in}}}} \delta_{jm} + \frac{\cos \left( \alpha \right)}{{r\left( s \right)}}H_{44}^{{fg^{\prime}}} \delta_{{{\text{in}}}} \delta_{jm} - H_{44}^{{f^{\prime}g^{\prime}}} \delta_{{{\text{in}}}} \delta_{jm} - \frac{{\sin^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{66}^{fg} \delta_{{{\text{in}}}} \delta_{jm} \\ & \qquad + \left. {\frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{66}^{fg} \delta_{jm} \tilde{A}_{{{\text{in}}}}^{s} + H_{66}^{fg} \delta_{jm} \tilde{B}_{{{\text{in}}}}^{s} + \frac{1}{{r\left( s \right)^{2} }}H_{22}^{fg} \delta_{{{\text{in}}}} \tilde{B}_{jm}^{\theta } } \right)\varphi_{nm}^{\theta } \\ & \qquad + \left( { - \frac{{\cos^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{44}^{gg} \delta_{{{\text{in}}}} \delta_{jm} + \frac{2\cos \left( \alpha \right)}{{r\left( s \right)}}H_{44}^{{gg^{\prime}}} \delta_{{{\text{in}}}} \delta_{jm} - H_{44}^{{g^{\prime}g^{\prime}}} \delta_{{{\text{in}}}} \delta_{jm} } \right. \\ & \qquad - \left. {\left. {\frac{{\sin^{2} \left( \alpha \right)}}{{r\left( s \right)^{2} }}H_{66}^{gg} \delta_{{{\text{in}}}} \delta_{jm} + \frac{1}{{r\left( s \right)^{2} }}H_{22}^{gg} \delta_{{{\text{in}}}} \tilde{B}_{jm}^{\theta } + \frac{\sin \left( \alpha \right)}{{r\left( s \right)}}H_{66}^{gg} \delta_{jm} \tilde{A}_{{{\text{in}}}}^{s} + H_{66}^{gg} \delta_{jm} \tilde{B}_{{{\text{in}}}}^{s} } \right)\psi_{nm}^{\theta } } \right\} \\ & \quad = {\text{I}}_{fg} \frac{{\partial^{2} \varphi_{ij}^{s} }}{{\partial t^{2} }}{\text{ + I}}_{g0} \frac{{\partial^{2} u_{ij} }}{{\partial t^{2} }}{\text{ + I}}_{gg} \frac{{\partial^{2} \psi_{ij}^{s} }}{{\partial t^{2} }} \\ \end{aligned} $$
(B.6)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, H., Ebrahimi, F., Mohammadi, Y. et al. Elastic foundation effects on dynamic characteristics of agglomerated hybrid laminated truncated conical nanocomposite panels and shells. Acta Mech 235, 2381–2414 (2024). https://doi.org/10.1007/s00707-023-03844-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03844-4

Navigation