Skip to main content
Log in

MHD Casson nanofluid flow in a square enclosure with non-uniform heating using the Brinkman model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this investigation, we have examined the flow and thermal characteristics of MHD Casson nanofluid in a square enclosure with non-uniform heat source at the bottom wall using the Brinkman model. Finite volume technique is employed to solve system of nonlinear partial differential equations. Impact of the governing parameters on the local Nusselt number, streamlines and isotherms has been demonstrated. Two counter rotating vortices are seen in the streamlines which result from the buoyancy caused by the variations in fluid temperature along the side of the enclosure with non-uniform temperature distribution. An increase in the Raleigh number results in a sharp rise in the temperature in the middle of the enclosure, whereas the thermal distribution becomes steeper near the enclosure walls. It has been noted that, for higher values of the Rayleigh number, effect of the magnetic field (quantified by the Hartman number) becomes prominent as a force of retardation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E. Abu-Nada, H.F. Oztop, I. Pop, Buoyancy induced flow in a nano-fluid filled enclosure partially exposed to forced convection. Superlattices Microstruct. 51, 381–395 (2012)

    Article  ADS  Google Scholar 

  2. S.U.S. Choi, Enhancing Thermal Conductivity of Fluids with Nanoparticles. Developments and Applications of Non-Newtonian Flows, vol 66 (ASME, New York, 1995), pp 99–105

  3. S.U.S. Choi, Nano-fluids: from vision to reality through research. J. Heat Transf. 131(3), 1–9 (2009)

    Article  Google Scholar 

  4. A. Akbarinia, M. Abdolzadeh, R. Laura, Critical investigation of heat transfer enhancement using nano-fluids in micro channels with slip and non-slip flow regimes. Appl. Therm. Eng. 31(4), 556–565 (2010)

    Article  Google Scholar 

  5. S.M.S. Murshed, C.A.N. de Castro, M.J.V. Lourenco, M.L.M. Lopes, F.J.V. Santos, A review of boiling and convective heat transfer with nanofluids. Renew. Sustain. Energy Rev. 15, 2342–2354 (2011)

    Article  Google Scholar 

  6. W. Yu, D.M. France, J.L. Routbort, S.U.S. Choi, Review and comparison of nano-fluid thermal conductivity and heat transfer enhancements. Heat Transf. Eng. 29(5), 432–460 (2008)

    Article  ADS  Google Scholar 

  7. G. de Vahl Davis, Natural convection of air in a square cavity: a bench mark numerical solution. Int. J. Numer. Methods Fluids 3(3), 249–264 (1983)

    Article  ADS  Google Scholar 

  8. N. Casson, A flow equation for pigment-oil suspensions of the printing ink type, in Rheology of disperse systems, ed. by C.C. Mill (Pergamon Press, Oxford, 1959), pp. 84–104

    Google Scholar 

  9. A.J. Chamkha, Chamkha Natural convection flow under magnetic field in a square cavity for uniformly linearly heated adjacent walls. Int. J. Numer. Methods Heat Fluid Flow 22, 677–698 (2012)

    Article  Google Scholar 

  10. S.A. Hossain, M.A. Alim, S.K. Saha, A finite element analysis on MHD free convection flow in open square cavity containing heated circular cylinder. Am. J. Comput. Math. 5, 41–54 (2015)

    Article  Google Scholar 

  11. A. Kamran, S. Hussain, M. Sagheer, N. Akmal, A numerical study of magnetohydrodynamics flow in Casson nanofluid combined with Joule heating and slip boundary conditions. Results Phy. 7, 3037–3048 (2017)

    Article  ADS  Google Scholar 

  12. N.T. Eldabe, M.E. Gabr, S.A. Zaher, Boundary layer flow of MHD Casson nano-fluid with heat and mass transfer through porous medium over a semi infinite moving plate. J. Interpol. Approx. Sci. Comp. 2, 21–34 (2018)

    Google Scholar 

  13. F. Mabood, K. Das, Outlining the impact of melting on MHD Casson fluid flow past a stretching sheet in a porous medium with radiation. Heliyon 5, 1–23 (2019)

    Article  Google Scholar 

  14. M. Sheikholeslami, Z. Shah, A. Tassaddiq, A. Shafee, I. Khan, Application of electric field for augmentation of ferrofluid heat transfer in an enclosure including double moving walls. IEEE Access 21048–21056 (2019)

  15. P. Umadevi, N. Nithyadevi, Magneto convection of water based nanofluids inside an enclosure having uniform heat generation and various thermal boundaries. J. Nigeri. Math. Soc. 35, 82–92 (2016)

    Article  MathSciNet  Google Scholar 

  16. A.I. Alsabery, M.A. Sheremet, A.J. Chamkha, I. Hashim, MHD convective heat transfer in a discretely heated square cavity with conductive inner block using two-phase nanofluid model. Sci. Rep. 8, 1–17 (2018)

    Article  ADS  Google Scholar 

  17. S. Mahjabin, MdA Alim, Effect of hartmann number on free convective flow of MHD fluid in a square cavity with a heated cone of different orientation. Am. J. Comput. Math. 8, 314–325 (2018)

    Article  Google Scholar 

  18. A.H. Bhuiyan, M.A. Alim, Md.N. Uddin, Effect of hartmann number on free convective flow in a square cavity with different positions of heated square block. World Acad. Sci. Eng. Technol. Int. J. Math. Comput. Phy. Elect. Comp. Eng. 8(2), 385–390 (2014)

  19. S.M. Aminossasati, B. Ghasemi, Natural convection cooling of a localised heat source at the bottom of a nano-fluid filled enclosure. Euro. J. Mech. B/Fluid 28, 630–640 (2009)

    Article  ADS  Google Scholar 

  20. H.F. Oztop, E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nano-fluids. Int. J. Heat Fluid Flow 29, 1326–1336 (2008)

    Article  Google Scholar 

  21. I. Mejri, A. Mahmoudi, M.A. Abbassi, A. Omri, MHD natural convection in a nanofluid filled enclosure with non-uniform heating on both side walls. Tech. Sci. Press 10(1), 83–114 (2014)

    Google Scholar 

  22. I. Mejri, A. Mahmoudi, M.A. Abbassi, A. Omri, Lattice Boltzmann simulation of MHD natural convection in a nanofluid filled enclosure with non-Uniform heating on both side walls. World Acad. Sci. Eng. Tech. Int. J. Phy. Nucl. Sci. Eng. 8(1), 28–44 (2014)

    Google Scholar 

  23. M. Ghalambaz, A. Doostani, E. Izadpanahi, A.J. Chamkha, Conjugate natural convection flow of Ag–MgO/water hybrid nanofluid in a square cavity. J. Therm. Anal. Calorim. (2019). https://doi.org/10.1007/s10973-019-08617-7(0123456789)

    Article  Google Scholar 

  24. T. Tayebi, A.J. Chamkha, Entropy generation analysis due to MHD natural convection flow in a cavity occupied with hybrid nanofluid and equipped with a conducting hollow cylinder. J. Therm. Anal. Calorim. (2019). https://doi.org/10.1007/s10973-019-08651-5

    Article  Google Scholar 

  25. A. Bhattacharyya, G.S. Seth, R. Kumar, A.J. Chamkha, Simulation of Cattaneo-Christov heat flux on the flow of single and multi-walled carbon nanotubes between two stretchable coaxial rotating disks. J. Therm. Anal. Calorim. (2019). https://doi.org/10.1007/s10973-019-08644-4

    Article  Google Scholar 

  26. A.I. Alsabery, M.A. Ismael, A.J. Chamkha, I. Hashim, Effect of nonhomogeneous nanofluid model on transient natural convection in a non-Darcy porous cavity containing an inner solid body. Int. Commun. Heat Mass Transf. 110 (2020)

  27. E. Khodabandeh, D. Toghraie, A. Chamkha, R. Mashayekhi, O. Akbariand, S.A. Rozati, Energy saving with using of elliptic pillows in turbulent flow of two-phase water-silver nanofluid in a spiral heat exchanger. Int. J. Numer. Methods Heat Fluid Flow (2018)

  28. T. Tayebi, A.J. Chamkha, Entropy generation analysis during MHD natural convection flow of hybrid nanofluid in a square cavity containing a corrugated conducting block. Int. J. Numer. Methods Heat Fluid Flow 30(3), 1115–1136 (2020)

    Article  Google Scholar 

  29. D. Toghraie, R. Mashayekhi, H. Arasteh, S. Sheykhi, M. Niknejadi, A.J. Chamkha, Two-phase investigation of water-Al2O3 nanofluid in a micro concentric annulus under non-uniform heat flux boundary conditions. Int. J. Numer. Methods Heat Fluid Flow (2019). https://doi.org/10.1108/hff-11-2018-0628

  30. F. Selimefendigil, A.J. Chamkha, MHD mixed convection of nanofluid in a three dimensional vented cavity with surface corrugation and inner rotating cylinder. Int. J. Numer. Methods Heat Fluid Flow (2019). https://doi.org/10.1108/hff-10-2018-0566

  31. F. Selimefendigil, H.F. Öztop, A.J. Chamkha, Role of magnetic field on forced convection of nanofluid in a branching channel. Int. J. Numer. Methods Heat Fluid Flow (2019). https://doi.org/10.1108/hff-10-2018-0568

  32. H.M. Sadeghi, M. Babayan, A.J. Chamkha, Investigation of using multi-layer PCMs in the tubularheat exchanger with periodic heat transfer boundary condition. Int. J. Heat and Mass Trans. (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.118970

    Article  Google Scholar 

  33. Y. Menni, A.J. Chamkha, N. Massarotti, H. Ameur, N. Kaid, Hydrodynamic and thermal analysis of water, ethylene glycol and water-ethylene glycol as base fluids dispersed by aluminum oxide nano-sized solid particles. Int. J. Numer. Methods Heat Fluid Flow (2019). https://doi.org/10.1108/hff-10-2019-0739

  34. G. Rasool, T. Zhang, A. J. Chamkha, A. Shafiq, I. Tlili, G. Shahzadi, Entropy generation and consequences of binary chemical reaction on MHD Darcy–Forchheimer Williamson nanofluid flow over nonlinearly stretching surface. Entropy 22(18) (2020). https://doi.org/10.3390/e22010018

  35. M. Ghalambaz, A.J. Chamkha, D. Wen, Natural convective flow and heat transfer of nano-encapsulated phase change materials (NEPCMs) in a cavity. Int. J. Heat Mass Transf. 138, 738–749 (2019)

    Article  Google Scholar 

  36. A.I. Alsabery, R. Mohebbi, A.J. Chamkha, I. Hashim, Effect of local thermal non-equilibrium model on natural convection in a nanofluid-filled wavy-walled porous cavity containing inner solid cylinder. Chem. Eng. Sci. 201(29), 247–263 (2019)

    Article  Google Scholar 

  37. A.S. Dogonchi, T. Armaghani, A.J. Chamkha, D.D. Ganji, Natural convection analysis in a cavity with an inclined elliptical heater subject to shape factor of nanoparticles and magnetic field. Arab. J. Sci. Eng. (2019). https://doi.org/10.1007/s13369-019-03956-x

    Article  Google Scholar 

  38. A.I. Alsabery, M.A. Ismael, A.J. Chamkha, I. Hashim, Effects of two-phase nanofluid model on MHD mixed convection in a lid-driven cavity in the presence of conductive inner block and corner heater. J. Therm. Anal. Calorim. (2018). https://doi.org/10.1007/s10973-018-7377.V

    Article  Google Scholar 

  39. S.A.M. Mehryan, E. Izadpanahi, M. Ghalambaz, A.J. Chamkha, Mixed convection flow caused by an oscillating cylinder in a square cavity filled with Cu–Al2O3/water hybrid nanofluid. J. Therm. Anal. Calorim. https://doi.org/10.1007/s10973-019-08012-2

  40. J. Raza, F.M. Oudina, A.J. Chamkha, Magnetohydrodynamic flow of molybdenum disulfide nanofluid in a channel with shape effects. Multidiscip. Model. Mater. Struct. 15(4), 737–757 (2019)

    Article  Google Scholar 

  41. Y. Menni, A. Azzi1, A. J. Chamkha, Enhancement of convective heat transfer in smooth air channels with wall-mounted obstacles in the flow path. J. Therm. Anal. Calorim. https://doi.org/10.1007/s10973-018-7268-x

  42. Z. Li, M. Ramzan, A. Shafee, S. Saleem, Q.M. Al-Mdallal, A.J. Chamkha, Numerical approach for nanofluid transportation due to electric force in a porous enclosure. Micro system Tech. https://doi.org/10.1007/s00542-018-4153-2

  43. I. Zahan, R. Nasrin, M.A. Alim, MHD effect on conjugate heat transfer in a nano-fluid filled rectangular enclosure. J. Petrol. Sci. E 3(3), 114–123 (2018)

    Google Scholar 

  44. Y. El Hammami, M. El Hattab, R. Mir, T. Mediouni, Numerical study of natural convection of nanofluid in a square enclosure in the presence of the magnetic field. Int. J. Eng. Adv. Tech. (IJEAT), 4(4), ISSN: 2249–8958 (2015)

  45. H.C. Brinkman, The viscosity of concentrated suspensions and solution. J. Chem. Phys. 20(4), 571–581 (1952)

    Article  ADS  Google Scholar 

  46. J.C. Maxwell, M.A.A Treatise on Electricity and Magnatism, 2nd Edition, Oxford University Press, Cambridge (1904)

Download references

Acknowledgements

The authors are grateful to the learned reviewers for their keen review and valuable suggestions to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asia Yasmin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasmin, A., Ali, K. & Ashraf, M. MHD Casson nanofluid flow in a square enclosure with non-uniform heating using the Brinkman model. Eur. Phys. J. Plus 136, 151 (2021). https://doi.org/10.1140/epjp/s13360-021-01093-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01093-9

Navigation