Skip to main content
Log in

MHD Natural Convection Flow of CuO/Water Nanofluid in a Differentially Heated Hexagonal Enclosure with a Tilted Square Block

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

A numerical investigation has been performed to analyze the effect of magnetohydrodynamic natural convection flow in a differentially heated hexagonal enclosure having a tilted square block filled with CuO/water nanofluid. The horizontal walls of the cavity and tilted walls of the obstacle are uniformly heated of temperature \(\hbox {T}_\mathrm{h}\) while the inclined walls are kept at constant temperature \(\hbox {T}_\mathrm{c}\). The governing conservation equations of the physical problem have been solved using finite element method based on Galerkin weighted residual technique and obtained numerical results are presented graphically in terms of streamlines, isotherms, average Nusselt numbers, mid height horizontal and vertical velocities, average temperature and average velocity of nanofluid for a range of Rayleigh number (\(10^{3} \le { Ra} \le 10^{6}\)), Hartmann number (\(0 \le { Ha} \le 70\)) and solid volume fraction (\(0.1\% \le \phi \le 5\%\)) to show the flow structures and temperature characteristics. It is found that the flow fields and temperature distributions are influenced significantly for the effect of pertinent parameters. In addition, overall heat transfer rate enhanced due to higher values of Ra and \(\phi \) along with lower value of Ha. Comparisons of the present results with the previously published results on the basis of special cases are performed and found to be in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(C_p\) :

Specific heat at constant pressure (kJ kg\(^{-1}\) K\(^{-1}\))

g :

Gravitational acceleration (m s\(^{-2}\))

Ra :

Rayleigh number \(g\beta _f (T_h -T_c )L^{3}/\nu _f \alpha _f\)

L:

Length (m)

h :

Local heat transfer coefficient (W m\(^{-2}\) K\(^{-1}\))

k :

Thermal conductivity (W m\(^{-1}\) K\(^{-1}\))

Nu :

Nusselt number \(\textit{Nu} = hL/k_f\)

Pr :

Prandtl number \(\textit{Pr} = \nu _f /\alpha _f\)

p:

Dimensional pressure (N m\(^{-2}\))

P:

Dimensionless pressure

\(q_w\) :

Heat flux (W m\(^{-2}\))

T :

Dimensional temperature (K)

uv :

Dimensional velocity components (m s\(^{-1}\))

UV :

Dimensionless velocity components

xy :

Dimensional coordinates (m)

XY :

Dimensionless coordinates

\(\alpha \) :

Fluid thermal diffusivity (m\(^{2}\) s\(^{-1}\))

\(\beta \) :

Thermal expansion coefficient (K\(^{-1}\))

\(\phi \) :

Volume fraction of nanoparticles

\(\theta \) :

Dimensionless temperature \(\theta = (T-T_c )/(T_h -T_c )\)

\(\mu \) :

Dynamic viscosity (N s m\(^{-2}\))

\(\nu \) :

Kinematic viscosity (m\(^{2}\) s\(^{-1}\))

\(\rho \) :

Density (kg m\(^{-3}\))

f :

Fluid

h :

Hot

c :

Cold

nf :

Nanofluid

References

  1. Khanafer, K., Vafai, K., Lightstone, M.: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 46, 3639–3653 (2003)

    Article  MATH  Google Scholar 

  2. Jou, R.-Y., Tzeng, S.-C.: Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures. Int. Commun. Heat Mass Transf. 33, 727–736 (2006)

    Article  Google Scholar 

  3. Daungthongsuk, W., Wongwises, S.: A critical review of convective heat transfer of nanofluids. Renew. Sustain. Energy Rev. 11, 797–817 (2007)

    Article  Google Scholar 

  4. Tiwari, R.K., Das, M.K.: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50, 2002–2018 (2007)

    Article  MATH  Google Scholar 

  5. Abu-Nada, E.: Effects of variable viscosity and thermal conductivity of \(\text{ Al }_{2}\text{ O }_{3}\)-water nanofluid on heat transfer enhancement in natural convection. Int. J. Heat Fluid Flow 30, 679–690 (2009)

    Article  Google Scholar 

  6. Abu-Nada, E., Masoud, Z., Oztop, H.F., Campo, A.: Effect of nanofluid variable properties on natural convection in enclosures. Int. J. Therm. Sci. 49, 479–491 (2010)

    Article  Google Scholar 

  7. Ghasemi, B., Aminossadati, S.M.: Mixed convection in a lid-driven triangular enclosure filled with nanofluids. Int. Commun. Heat Mass Transf. 37, 1142–1148 (2010)

    Article  Google Scholar 

  8. Zi-Tao, Y., Wei Wang, X.X., Fan, L.-W., Ya-Cai, H., Cen, K.-F.: A numerical investigation of transient natural convection heat transfer of aqueous nanofluids in a differentially heated square cavity. Int. Commun. Heat Mass Transf. 38, 585–589 (2011)

    Article  Google Scholar 

  9. Basak, T., Chamkha, A.J.: Heatline analysis on natural convection for nanofluids confined within square cavities with various thermal conditions. Int. J. Heat Mass Transf. 55, 5526–5543 (2012)

    Article  Google Scholar 

  10. Nasrin, R., Alim, M.A., Chamkha, A.J.: Buoyancy-driven heat transfer of water-\(\text{ Al }_{2}\text{ O }_{3}\) nanofluid in a closed chamber: effects of solid volume fraction, Prandtl number and aspect ratio. Int. J. Heat Mass Transf. 55, 7355–7365 (2012)

    Article  Google Scholar 

  11. Qi, C., He, Y., Yan, S., Tian, F., Yanwei, H.: Numerical simulation of natural convection in a square enclosure filled with nanofluid using the two-phase Lattice Boltzmann method. Nanoscale Res. Lett. 8, 56 (2013)

    Article  Google Scholar 

  12. Ahmed, M., Eslamian, M.: Numerical simulation of natural convection of a nanofluid in an inclined heated enclosure using two-phase Lattice Boltzmann method: accurate effects of thermophoresis and Brownian forces. Nanoscale Res. Lett. 10, 296 (2015)

    Article  Google Scholar 

  13. Sheikholeslami, M., Ellahi, R., Hassan, M., Soleimani, S.: A study of natural convection heat transfer in a nanofluid filled enclosure with elliptic inner cylinder. Int. J. Numer. Methods Heat Fluid Flow 24, 1906–1927 (2014)

    Article  Google Scholar 

  14. Sheremet, M.A., Grosan, T., Pop, I.: Steady-state free convection in right-angle porous trapezoidal cavity filled by a nanofluid: Buongiorno’s mathematical model. Eur. J. Mech. B Fluids 53, 241–250 (2015)

    Article  MathSciNet  Google Scholar 

  15. Esfe, M.H., Arani, A.A.A., Yan, W.-M., Ehteram, H., Aghaie, A., Afrand, M.: Natural convection in a trapezoidal enclosure filled with carbon nanotube-EG-water nanofluid. Int. J. Heat Mass Transf. 92, 76–82 (2016)

    Article  Google Scholar 

  16. M’hamed, B., Sidik, N.A.C., Yazid, M.N.A.W.M., Mamat, R., Najafi, G., Kefayati, G.H.R.: A review on why researchers apply external magnetic field on nanofluids. Int. Commun. Heat Mass Transf. 78, 60–67 (2016)

    Article  Google Scholar 

  17. Ece, M.C., Buyuk, E.: Natural-convection flow under a magnetic field in an inclined rectangular enclosure heated and cooled on adjacent walls. Fluid Dyn. Res. 38, 564–590 (2006)

    Article  MATH  Google Scholar 

  18. Kahveci, K., Oztuna, S.: MHD natural convection flow and heat transfer in a laterally heated partitioned enclosure. Eur. J. Mech. B Fluids 28, 744–752 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pirmohammadi, M., Ghassemi, M., Sheikhzadeh, G.A.: Effect of a magnetic field on buoyancy-driven convection in differentially heated square cavity. IEEE Trans. Magn. 45, 407–411 (2009)

    Article  Google Scholar 

  20. Sathiyamoorthy, M., Chamkha, A.J.: Effect of magnetic field on natural convection flow in a liquid gallium filled square cavity for linearly heated side wall(s). Int. J. Therm. Sci. 49, 1856–1865 (2010)

    Article  Google Scholar 

  21. Sathiyamoorthy, M., Chamkha, A.J.: Natural convection flow under magnetic field in a square cavity for uniformly (or) linearly heated adjacent walls. Int. J. Numer. Methods Heat Fluid Flow 22, 677–698 (2012)

    Article  MATH  Google Scholar 

  22. Nasrin, R., Parvin, S.: Hydromagnetic effect on mixed convection in a lid-driven cavity with sinusoidal corrugated bottom surface. Int. Commun. Heat Mass Transf. 38, 781–789 (2011)

    Article  Google Scholar 

  23. Saha, S.C.: Effect of MHD and heat generation on natural convection flow in an open square cavity under microgravity condition. Eng. Comput. Int. J. Comput. Aided Eng. Softw. 30, 5–20 (2013)

    Article  Google Scholar 

  24. Bondareva, N.S., Sheremet, M.A.: Effect of inclined magnetic field on natural convection melting in a square cavity with a local heat source. J. Magn. Magn. Mater. 419, 476–484 (2016)

    Article  Google Scholar 

  25. Maxwell-Garnett, J.C.: Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. A 203, 385–420 (1904)

    Article  MATH  Google Scholar 

  26. Pak, B.C., Cho, Y.I.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. J. Therm. Energy Gener. Transp. Storage Convers. 11, 151–170 (1998)

    Google Scholar 

  27. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, Fourth edn. McGraw-Hill, New York (1991)

    MATH  Google Scholar 

  28. Reddy, J.N.: An Introduction to Finite Element Analysis. McGraw-Hill, New-York (1993)

    Google Scholar 

  29. Zeinkiewicz, O.C., Taylor, R.L., Too, J.M.: Reduced integration technique in general analysis of plates and shells. Int. J. Numer. Methods Eng. 3, 275–290 (1971)

    Article  MATH  Google Scholar 

  30. Taylor, C., Hood, P.: A numerical solution of the Navier–Stokes equations using the finite element technique. Comput. Fluids 1, 73–89 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  31. Dechaumphai, P.: Finite Element Method in Engineering, 2nd edn. Chulalongkorn University Press, Bangkok (1999)

    Google Scholar 

  32. De Vahl Davis, G.: Natural convection of air in a square cavity a bench mark solution. Int. J. Numer. Methods Fluids 3, 249–264 (1983)

    Article  MATH  Google Scholar 

  33. Hadjisophocleous, G.V., Sousa, A.C.M., Venart, J.E.S.: Prediction of the transient natural convection in enclosures of arbitrary geometry using a nonorthogonal numerical model. Numer. Heat Transf. Int. J. Comput. Methodol. 13, 373–392 (1998)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Department of Mathematics, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh and the Department of Mathematics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh for support and technical help throughout this research. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mokaddes Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M.M., Alim, M.A., Akhter, R. et al. MHD Natural Convection Flow of CuO/Water Nanofluid in a Differentially Heated Hexagonal Enclosure with a Tilted Square Block. Int. J. Appl. Comput. Math 3 (Suppl 1), 1047–1069 (2017). https://doi.org/10.1007/s40819-017-0400-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-017-0400-y

Keywords

Navigation