Skip to main content
Log in

Heat transfer of MHD natural convection Casson nanofluid flows in a wavy trapezoidal enclosure

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

A two-dimensional problem featuring the buoyancy-driven MHD nanofluid flow in a wavy trapezoidal enclosure is considered. The enclosure’s bottom wall is wavy with a higher temperature than the two sidewalls. The top wall is assumed to be insulated. The chamber is filled with nanofluid where the water Casson liquid is considered as base fluid and the aluminium oxide \(\text {Al}_{2}\text {O}_{3}\) as the nanoparticles. The viscous and Joule dissipation effects are incorporated in the model, considering the temperature difference due to differential wall temperature. The conservation equations are used for the description of flow and heat transfer. The Galerkin finite element method is employed to solve the resulting non-dimensionalized unsteady initial and boundary value problem using Taylor-Hood elements to avoid numerical instabilities. The influence of the Casson parameter, nanoparticle volume fraction and Hartmann number on the streamlines and isotherms are discussed. The rate of heat transfers near the bottom wall is analysed through simulated data and the sensitivity of the average Nusselt number is performed using the response surface methodology (RSM). It is found that the heat transfer rate increases as the Hartmann number increases. The Casson parameter and the nanoparticle volume fraction significantly influence the heat transfer rate in high Hartmann number flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(\varGamma \) :

Boundary wall

\(\gamma \) :

Casson parameter

\(\kappa \) :

Thermal conductivity (Wm\(^{-1}\)K\(^{-1}\))

\(\mu \) :

Dynamic viscosity (kgm\(^{-1}\)s\(^{-1}\))

\(\mu _{B}\) :

Plastic dynamic viscosity (kg m\(^{-1}\)s\(^{-1}\))

\(\varOmega \) :

Fluid domain

\(\phi \) :

Solid volume fraction

\(\psi \) :

Stream function

\(\rho \) :

Density (kgm\(^{-3}\))

\(\sigma \) :

Electrical conductivity (\(\varOmega ^{-1}\)m\(^{-1}\))

\(\tau \) :

Shear stress (kg m\(^{-1}\)s\(^{-2}\))

Ec :

Eckert number

Nu :

Nusselt number

Pr :

Prandtl number

Ra :

Rayleigh number

\((T_{1}, T_{2})\) :

Wall temperature (K)

(uv):

The x and y components of velocity (ms\(^{-1}\))

(xy):

Distance along x and y coordinates (m)

\(\beta \) :

Coefficient of thermal expansion (K\(^{-1}\))

\(B_{0}\) :

Induced magnetic field (kgA\(^{-1}\)s\(^{-2}\))

\(c_{p}\) :

Specific heat at constant pressure (Jkg\(^{-1}\)K\(^{-1}\))

e :

Deformation rate tensor (s\(^{-1}\))

g :

Gravitational acceleration (ms\(^{-2}\))

h :

Height of the enclosure (m)

l :

Length of the bottom wall (m)

p :

Pressure field (kg m\(^{-1}\)s\(^{-2}\))

\(p_{y}\) :

Yield stress (kg m\(^{-1}\)s\(^{-2}\))

T :

Temperature (K)

t :

Time (s)

av :

Average

f :

Fluid

nf :

Nanofluid

References

  1. K. Venkatadri, S. Abdul Gaffer, V. Ramachandra Prasad, B. Md. Hidayathulla Khan, O.A. Beg, Simulation of natural convection heat transfer in a 2-D trapezoidal enclosure. Int. J. Autom. Mech. Eng. 16(4), 7375–7390 (2019)

    Article  Google Scholar 

  2. K. Venkatadri, O.A. Bég, P. Rajarajeswari, V. Ramachandra Prasad, Numerical simulation of thermal radiation influence on natural convection in a trapezoidal enclosure: heat flow visualization through energy flux vectors. Int. J. Mech. Sci. 171, 105391 (2020)

    Article  Google Scholar 

  3. K. Venkatadri, O.A. Bég, P. Rajarajeswari, V. Ramachandra Prasad, A. Subbarao, B.M. Hidayathulla Khan, Numerical simulation and energy flux vector visualization of radiative convection heat transfer in a porous triangular enclosure. J. Porous Media 23(12), 1187–1199 (2020)

    Article  Google Scholar 

  4. V. Chandanam, C.V. Lakshmi, K. Venkatadri, O.A. Beg, V. Ramachandra Prasad, Numerical simulation of thermal management during natural convection in a porous triangular cavity containing air and hot obstacles. Eur. Phys. J. Plus 136, 885 (2021)

    Article  Google Scholar 

  5. S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles. Dev. Appl. Non-Newtonian Flows 66, 99–105 (1995)

    Google Scholar 

  6. S. Lee, S.U.S. Choi, J.A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles. J. Heat Transfer 121, 280–289 (1999)

    Article  Google Scholar 

  7. Y.M. Xuan, Q. Li, Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow 21, 58–64 (2000)

    Article  Google Scholar 

  8. H. Xie, J. Wang, T.G. Xie, Y. Liu, F. Ai, Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J. Appl. Phys. 91, 4568–4572 (2002)

    Article  ADS  Google Scholar 

  9. S.K. Das, S.U.S. Choi, H.E. Patel, Heat transfer in nanofluids—a review. Heat Transfer Eng. 37, 3–19 (2006)

    Article  ADS  Google Scholar 

  10. X.Q. Wang, A.S. Mujumdar, Heat transfer characteristics of nanofluids: a review. Int. J. Thermal Sci. 46, 1–19 (2007)

    Article  Google Scholar 

  11. D. Elcock, Potential impacts of nanotechnology on energy transmission applications and needs (Environmental Science Division, Argonne National Laboratory, 2007)

  12. P. Ternik, R. Rudolf, Z. Zunic, Numerical study of heat transfer enhancement of homogeneous water-Au nanofluid under natural convection. Mater. Technol. 46(3), 257–261 (2012)

    Google Scholar 

  13. H.F. Oztop, E. Abu-Nada, Y. Varol, K. Al-Salem, Computational analysis of non-isothermal temperature distribution on natural convection in nanofluid filled enclosures. Superlattices Microstruct. 49(4), 453–467 (2011)

    Article  ADS  Google Scholar 

  14. E. Abu-Nada, H.F. Oztop, Effects of inclination angle on natural convection in enclosures filled with Cu-water nanofluid. Int. J. Heat Fluid Flow 30(4), 669–678 (2009)

    Article  Google Scholar 

  15. Selimefendigil, F.O. Hakan, Natural convection and entropy generation of nanofluid filled cavity having different shaped obstacles under the influence of magnetic field and internal heat generation. J. Taiwan Inst. Chem. Eng. 56, 42–56 (2015)

    Article  Google Scholar 

  16. S. Singh, R. Bhargava, Numerical study of natural convection with a wavy enclosure using meshfree approach: effect of corner heating. Sci. World J. 2014, 842401

  17. V.M. Job, S.R. Gunakala, Unsteady MHD free convection nanofluid flows within a wavy trapezoidal enclosure with viscous and joule dissipation effects. Numer. Heat Transf. Part A: Appl. 69(4), 421–443 (2015)

    Article  ADS  Google Scholar 

  18. E. Abu-Nada, H.F. Oztop, Numerical analysis of \(\text{ Al}_2\text{ O}_3\)/water nanofluids natural convection in a wavy walled cavity. Numer. Heat Transf. Part A: Appl. 59(5), 403–419 (2011)

    ADS  Google Scholar 

  19. H. Chen, Y. Ding, A. Lapkin, X. Fan, Rheological behavior of ethylene glycoltitanate nanotube nanofluids. J. Nanopart. Res. 11(6), 1513–1520 (2009)

    Article  ADS  Google Scholar 

  20. M. Hojjat, S.G. Etemad, R. Bagheri, J. Thibault, Rheological characteristics of non-Newtonian nanofluids: experimental investigation. Int. Commun. Heat Mass Transf. 38, 144–148 (2011)

    Article  MATH  Google Scholar 

  21. H. Chen, Y. Ding, A. Lapkin, Rheological behaviour of nanofluids containing tube/rod-like nanoparticles. Powder Technol. 194, 132–141 (2009)

    Article  Google Scholar 

  22. J. Kleppe, W.J. Marner, Transient free convection in a Bingham plastic on a vertical flat plate. J. Heat Transf. 25, 371–376 (1972)

    Article  Google Scholar 

  23. B.I. Olajuwon, Flow and natural convection heat transfer in a power law fluid past a vertical plate with heat generation. Int. J. Nonlinear Sci. 7, 50–56 (2009)

    MathSciNet  MATH  Google Scholar 

  24. M.N. Zakaria, H. Abid, I. Khan, S. Sharidan, The effects of radiation on free convection flow with ramped wall temperature in Brinkman type fluid. J. Teknologi 62, 33–39 (2013)

    Google Scholar 

  25. M.A. Hassan, M. Pathak, M.K. Khan, Natural convection of viscoplastic fluids in a square enclosure. J. Heat Transf. 135(12), 122501 (2013)

    Article  Google Scholar 

  26. G.H.R. Kefayati, FDLBM simulation of entropy generation due to natural convection in an enclosure filled with non-Newtonian nanofluid. Powder Technol. 273, 176–190 (2015)

    Article  Google Scholar 

  27. N. Casson, A flow equation for pigment oil suspensions of the printing ink type, in Rheology of Disperse Systems, vol. 22, ed. by C.C. Mill (Pergamon Press, Oxford, 1959), pp. 84–102

    Google Scholar 

  28. T.S. Devi, C.V. Lakshmi, K. VENKATADRI, V. Ramachandra Prasad, O.A. Bég, M.S. Reddy, Simulation of unsteady natural convection flow of a Casson viscoplastic fluid in a square enclosure utilizing a MAC algorithm. Heat Transf. 49, 1769–1787 (2020)

    Article  Google Scholar 

  29. T.S. Devi, C.V. Lakshmi, K. Venkatadri, M.S. Reddy, Influence of external magnetic wire on natural convection of non-Newtonian fluid in a square cavity. Partial Differ. Equ. Appl. Math. 4, 100041 (2021)

    Article  Google Scholar 

  30. K. Venkatadri, A. shobha, C. Venkata Lakshmi, V. Ramachandra Prasad, B. Md Hidayathulla Khan, Influence of magnetic wire positions on free convection of Fe\(_3\)O\(_4\)-water nanofluid in a square enclosure utilizing with MAC algorithm. J. Comput. Appl. Mech. 51(2), 323–331 (2020)

    Google Scholar 

  31. M. Trivedi, M.S. Ansari, Unsteady Casson fluid flow in a porous medium with inclined magnetic field in presence of nanoparticles. Eur. Phys. J. Special Topics 228(12), 2553–2569 (2019)

    Article  ADS  Google Scholar 

  32. M. Nakamura, T. Sawada, Numerical study on the flow of a non-Newtonian fluid through an axisymmetric stenosis. J. Biomech. Eng. 110(2), 137–143 (1988)

    Article  Google Scholar 

  33. S. Rashidi, M. Bovand, J.A. Esfahani, Heat transfer enhancement and pressure drop penalty in porous solar heat exchangers: a sensitivity analysis. Energy Convers. Manag. 103, 726–738 (2015)

    Article  Google Scholar 

  34. S. Rashidi, M. Bovand, J.A. Esfahani, Structural optimization of nanofluid flow around an equilateral triangular obstacle. Energy 88, 385–398 (2015)

    Article  Google Scholar 

  35. S. Rashidi, M. Bovand, J.A. Esfahani, G. Ahmadi, Discrete particle model for convective Al2O3-water nanofluid around a triangular obstacle. Appl. Therm. Eng 100, 39–54 (2016)

  36. E. Suresh Reddy, S. Panda, M.K. Nayak, O.D. Makinde, Cross flow on transient double-diffusive natural convection in inclined porous trapezoidal enclosures. Heat Transf. (2021). https://doi.org/10.1002/htj.21908

    Article  Google Scholar 

  37. J. Donea, A. Huerta, Finite Element Methods for Flow Problems (John Wiley & Sons Ltd, 2003)

  38. J.N. Reddy, An Introduction to Nonlinear Finite Element Analysis: with Applications to Heat Transfer Fluid Mechanics and Solid Mechanics (OUP Oxford, 2004)

  39. Md. Abou-zeid, Effects of thermal-diffusion and viscous dissipation on peristaltic flow of micropolar non-Newtonian nanofluid: application of homotopy perturbation method. Results Phys. 6, 481–495 (2016)

    Article  ADS  Google Scholar 

  40. W.J. Minkowycz, E.M. Sparrow, J.P. Abraham, Nanoparticle Heat Transfer and Fluid Flow, 4th edn. (CRC Press, New York, 2013)

    Google Scholar 

  41. H.C. Brinkman, The Viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20, 571 (1952)

    Article  ADS  Google Scholar 

  42. C. Taylor, P. Hood, A numerical solution of the Navier-Stokes equations using finite element technique. Comput. Fluids 1, 73–89 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  43. K. Sadoughi, M. Hosseini, F. Shakeri, M. Azimi, Analytical simulation of MHD nanofluid flow over the horizontal plate. Front. Aerospace Eng. 2(4), 242–246 (1973)

  44. D.G. De Vahl, Natural convection Of air in a square cavity: a bench mark numerical solution. Int. J. Numer. Methods Fluids 3, 249–264 (1983)

    Article  MATH  Google Scholar 

  45. G.E.P. Box, K.B. Wilson, On the experimental attainment of optimum conditions. J. R. Stat. Soc. Ser. B 13, 1–45 (1951)

    MathSciNet  MATH  Google Scholar 

  46. D.C. Montgomery, Design and Analysis of Experiments (Wiley, Hoboken, 1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eda Suresh Reddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh Reddy, E., Panda, S. Heat transfer of MHD natural convection Casson nanofluid flows in a wavy trapezoidal enclosure. Eur. Phys. J. Spec. Top. 231, 2733–2747 (2022). https://doi.org/10.1140/epjs/s11734-022-00609-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00609-3

Navigation