Skip to main content
Log in

2D magnetic field effect on the thermal buckling of metal foam nanoplates reinforced with FG-GPLs lying on Pasternak foundation in humid environment

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper is devoted to illustrate the thermal buckling response of a graphene platelets (GPLs)-reinforced nanoplate with porosities lying on Pasternak’s foundation. The porous nanocomposite plate is exposed to 2D magnetic field and humid environment. In accordance with a nonlinear distribution law, the porosities and GPLs weight fraction are presumed to be varied through the nanoplate thickness. The modified Reddy’s plate theory containing the thickness stretching effect is employed with the nonlocal strain gradient theory to deduce the governing equations from the principle of virtual displacement. These equations are solved utilizing Navier type solution to obtain the critical buckling temperature. To check the accuracy of the present analysis, the deduced buckling temperature is compared with that published in the literature. Additional parametric studies are introduced to investigate the impacts of humidity, magnetic field, porosity factor, GPLs weight fraction and foundation stiffnesses on the critical buckling temperature of the FG GPLs nanoplates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Wang, K. Xie, T. Fu, A unified modified couple stress model for size-dependent free vibrations of FG cylindrical microshells based on high-order shear deformation theory. Eur. Phys. J. Plus 135, 71 (2020)

    Article  ADS  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, Electric field effect in atomically thin carbon films. Science 306, 5696 (2004)

    Article  Google Scholar 

  3. S. Zhao, Z. Zhao, Z.H. Yang, L. Ke, S.R. Kitipornchai, J. Yang, Functionally graded graphene reinforced composite structures: a review. Eng. Struct. 210, 110339 (2020)

    Article  Google Scholar 

  4. C. Feng, S. Kitipornchai, J. Yang, Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs). Compos. B Eng. 110, 132–140 (2017)

    Article  Google Scholar 

  5. M. Song, S. Kitipornchai, J. Yang, Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. Struct. 159, 579–588 (2017)

    Article  Google Scholar 

  6. J. Yang, H. Wu, S. Kitipornchai, Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Compos. Struct. 161, 111–118 (2017)

    Article  Google Scholar 

  7. S. Sahmani, M.M. Aghdam, T. Rabczuk, Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory. Compos. Struct. 186, 68–78 (2018)

    Article  Google Scholar 

  8. S. Amir, E. Arshid, M.R.G. Arani, Size-dependent magneto-electro-elastic vibration analysis of FG saturated porous annular/circular micro sandwich plates embedded with nano-composite face sheets subjected to multi-physical pre loads. Smart Structures and Systems 23, 5 (2019)

    Google Scholar 

  9. M.R. Barati, A.M. Zenkour, Analysis of postbuckling of graded porous GPL-reinforced beams with geometrical imperfection. Mech. Adv. Mater. Struct. 26, 6 (2019)

    Article  Google Scholar 

  10. M.R. Barati, A.M. Zenkour, Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distributions. Mech. Adv. Mater. Struct. 26, 18 (2019)

    Google Scholar 

  11. M. Sobhy, Size dependent hygro-thermal buckling of porous FGM sandwich microplates and microbeams using a novel four-variable shear deformation theory. Int. J. Appl. Mech. 12, 2 (2020). https://doi.org/10.1142/S1758825120500179

    Article  Google Scholar 

  12. S. Sahmani, D.M. Madyira, Nonlocal strain gradient nonlinear primary resonance of micro/nano-beams made of GPL reinforced FG porous nanocomposite materials. Mech. Based Des. Struct. Mach. (2019). https://doi.org/10.1080/15397734.2019.1695627

    Article  Google Scholar 

  13. S. Zhao, Z.H. Yang, S.R. Kitipornchai, J. Yang, Dynamic instability of functionally graded porous arches reinforced by graphene platelets. Thin-Wallwd Struct. 147, 106491 (2020)

    Article  Google Scholar 

  14. M.A. Abazid, M. Sobhy, A.M. Zenkour, Wave propagation in FG porous GPLs-reinforced nanoplates under in-plane mechanical load and Lorentz magnetic force via a new quasi 3D plate theory. Mech. Based Des. Struct. Mach. (2020). https://doi.org/10.1080/15397734.2020.1769651

    Article  Google Scholar 

  15. A. Mhirech, S. Aouini, A. Alaoui-Ismaili, L. Bahmad, Study of RKKY interactions in a bilayer graphene structure with non-equivalent planes. J. Supercond. Nov. Magn. 30, 3189–3198 (2017). https://doi.org/10.1007/s10948-017-4146-x

    Article  Google Scholar 

  16. A. Mhirech, S. Aouini, A. Alaoui-Ismaili, L. Bahmad, Bi-layer graphene structure with non-equivalent planes: Magnetic properties study. Superlattices Microstruct. 117, 382–391 (2018). https://doi.org/10.1016/j.spmi.2018.03.073

    Article  ADS  Google Scholar 

  17. N. Tahiri, A. Jabar, L. Bahmad, Monte Carlo study of the magnetic properties of a bi-layer decorated graphene structure. Phys. Lett. A 381(4), 189–193 (2017). https://doi.org/10.1016/j.physleta.2016.11.011

    Article  Google Scholar 

  18. Z. Fadil, M. Qajjour, A. Mhirech, B. Kabouchi, L. Bahmad, W. Ousi Benomar, Dilution effects on compensation temperature in nano-trilayer graphene structure: Monte Carlo study. Phys. B 564, 104–113 (2019). https://doi.org/10.1016/j.physb.2019.03.006

    Article  ADS  Google Scholar 

  19. H. Labrim, A. Jabar, A. Belhaj, S. Ziti, L. Bahmad, L. Laânab, A. Benyoussef, Magnetic proprieties of La2FeCoO6 double perovskite: Monte Carlo study. J. Alloys Compd. 641, 37–42 (2015). https://doi.org/10.1016/j.jallcom.2015.04.068

    Article  Google Scholar 

  20. S. Idrissi, S. Ziti, H. Labrim, R. Khalladi, S. Mtougui, N. El Mekkaoui, I. El Housni, L. Bahmad, Magnetic properties of the Heusler compound CoFeMnSi: Monte Carlo simulations. Phys. A 527, 121406 (2019). https://doi.org/10.1016/j.physa.2019.121406

    Article  Google Scholar 

  21. D. Shahsavari, B. Karami, S. Mansouri, Shear buckling of single layer graphene sheets in hygrothermal environment resting on elastic foundation based on different nonlocal strain gradient theories. Eur. J. Mech. A 67, 200–214 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. B. Karami, D. Shahsavari, L. Li, Hygrothermal wave propagation in viscoelastic graphene under in-plane magnetic field based on nonlocal strain gradient theory. Physica E 97, 317–327 (2018)

    Article  ADS  Google Scholar 

  23. M. Bouazza, A.M. Zenkour, Free vibration characteristics of multilayered composite plates in a hygrothermal environment via the refined hyperbolic theory. Eur. Phys. J. Plus 133, 217 (2018). https://doi.org/10.1140/epjp/i2018-12050-x

    Article  Google Scholar 

  24. Y.Z. Wang, F.M. Li, K. Kishimoto, Thermal effects on vibration properties of double-layered nanoplates at small scales. Composites B 42, 1311–1317 (2011)

    Article  Google Scholar 

  25. E.O. Alzahrani, A.M. Zenkour, M. Sobhy, Small scale effect on hygro-thermo-mechanical bending of nanoplates embedded in an elastic medium. Compos. Struct. 105, 163–172 (2013)

    Article  Google Scholar 

  26. E. Reissner, On the theory of bending of elastic plates. J. Math. Phys. 23, 184–191 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  27. J.G. Ren, A new theory of laminated plate. Compos. Sci. Technol. 26, 225–239 (1986)

    Article  Google Scholar 

  28. T. Kant, B.N. Pandya, A simple finite element formulation of a higher-order theory for unsymmetrically laminated composite plates. Compos. Struct. 9(3), 215–264 (1988)

    Article  Google Scholar 

  29. P.R. Mohan, B.P. Naganarayana, G. Prathap, Consistent and variationally correct finite elements for higher-order laminated plate theory. Compos. Struct. 29(4), 445–456 (1994)

    Article  Google Scholar 

  30. J.N. Reddy, simple higher-order theory for laminated composite plates. J. Appl. Mech. 51(4), 745–752 (1984)

    Article  ADS  MATH  Google Scholar 

  31. M. Touratier, An efficient standard plate theory. Int. J. Eng. Sci. 29(8), 901–916 (1991)

    Article  MATH  Google Scholar 

  32. A.M. Zenkour, A comprehensive analysis of functionally graded sandwich plates: Part 1—deflection and stresses and Part 2—Buckling and free vibration. Int. J. Solids Struct. 42, 5224–5258 (2005)

    Article  MATH  Google Scholar 

  33. K.P. Soldatos, A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mech. 94, 195–200 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Karama, K.S. Afaq, S. Mistou, Mechanical behaviour of laminated composite beam by new multi-layered laminated composite structures model with transverse shear stress continuity. Int. J. Solids Struct. 40, 1525–1546 (2003)

    Article  MATH  Google Scholar 

  35. C.W. Lim, G. Zhang, J.N. Reddy, A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  ADS  Google Scholar 

  37. E.C. Aifantis, Strain gradient interpretation of size effects. Int. J. Fract. 95, 299–314 (1999)

    Article  Google Scholar 

  38. M.A. Abazid, The nonlocal strain gradient theory for hygrothermo-electromagnetic effects on buckling, vibration and wave propagation in piezoelectromagnetic nanoplates. Int. J. Appl. Mech. 11, 7 (2019)

    Article  Google Scholar 

  39. M. Sobhy, M.A. Abazid, Dynamic and instability analyses of FG graphene-reinforced sandwich deep curved nanobeams with viscoelastic core under magnetic field effect. Compos. Part B: Eng. 174, 106966 (2019)

    Article  Google Scholar 

  40. M. Sobhy, A.M. Zenkour, Wave propagation in magneto-porosity FG bi-layer nanoplates based on a novel quasi-3D refined plate theory. Waves Random Complex Media (2020). https://doi.org/10.1080/17455030.2019.1634853

    Article  Google Scholar 

  41. Y. Beldjelili, A. Tounsi, S.R. Mahmoud, Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory. Smart Struct. Syst. 18, 4 (2016)

    Article  Google Scholar 

  42. Y. Mokhtar, H. Heireche, A.A. Bousahla, M.S.A. Houari, A. Tounsi, S.R. Mahmoud, A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory. Smart Struct. Syst. 21, 4 (2018)

    Google Scholar 

  43. R.P. Shimpi, Refined plate theory and its variants. AIAA J. 40, 137–146 (2002)

    Article  ADS  Google Scholar 

  44. M. Sobhy, Differential quadrature method for magneto-hygrothermal bending of functionally graded graphene/Al sandwich curved beams with honeycomb core via a new higher-order theory. J. Sandwich Struct. Mater. (2020). https://doi.org/10.1177/1099636219900668

    Article  Google Scholar 

  45. E.C. Aifantis, On the gradient approach-relation to Eringen’s nonlocal theory. Int. J. Eng. Sci. 49, 1367–1377 (2011)

    Article  MathSciNet  Google Scholar 

  46. A.P. Roberts, E.J. Garboczi, Computation of the linear elastic properties of random porous materials with a wide variety of microstructure. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 458, 2021 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  47. S. Kitipornchai, D. Chen, J. Yang, Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Mater. Des. 116, 656–665 (2017)

    Article  Google Scholar 

  48. Y.H. Dong, Y.H. Li, D. Chen, J. Yang, Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion. Compos. Part B: Eng. 145, 1–13 (2018)

    Article  Google Scholar 

  49. J.C. Halpin, J.L. Kardos, The Halpin-Tsai equations: a review. Polym. Eng. Sci. 16, 5 (1976)

    Google Scholar 

  50. M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.Z. Yu, N. Koratkar, Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3, 12 (2009)

    Article  Google Scholar 

  51. K.D. John, Electromagnetics (McGraw-Hill, New York, 1984)

    MATH  Google Scholar 

  52. M. Sobhy, M.S. Alotebi, Transient hygrothermal analysis of FG sandwich plates lying on a visco-Pasternak foundation via a simple and accurate plate theory. Arab. J. Sci. Eng. 43, 5423–5437 (2018)

    Article  Google Scholar 

  53. A.M. Zenkour, M. Sobhy, Thermal buckling of various types of FGM sandwich plates. Compos. Struct. 93, 1 (2010)

    Article  Google Scholar 

  54. D. Chen, J. Yang, S. Kitipornchai, Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams. Compos. Sci. Technol. 142, 235–245 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Alakel Abazid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alakel Abazid, M. 2D magnetic field effect on the thermal buckling of metal foam nanoplates reinforced with FG-GPLs lying on Pasternak foundation in humid environment. Eur. Phys. J. Plus 135, 910 (2020). https://doi.org/10.1140/epjp/s13360-020-00905-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00905-8

Navigation