Skip to main content
Log in

Analytical study of the damping vibration behavior of the metal foam nanocomposite plates reinforced with graphene oxide powders in thermal environments

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

This article performs an analytical study on the damping vibration behavior of metal foam nanocomposite plate reinforced with graphene oxide powders (GOPs) in thermal environment. The GOPs are dispersed through the thickness of the structure according to three functionally graded (FG) and one uniform distribution patterns. The Halpin–Tsai micromechanical model is chosen for estimating the effective material properties of the structure having GOPs as reinforcement phase. Also, different porosity types are taken into account for the metal foam matrix. The plate is resting on a three-parameter viscoelastic medium containing Winkler and Pasternak layers in combination with viscous dampers which can dissipate the oscillation of the structure in some special cases. The Governing differential equations are derived via Hamilton’s principle on the basis of refined higher order shear deformation theory and then solved with employing Galerkin solution method to obtain the natural frequencies of the proposed structure. Moreover, various boundary conditions (B.Cs) including simply supported, fully clamped and different combinations of these B.Cs are considered in this study. The influences and confrontation of different significant parameters such as GOPs’ weight fraction, foundation parameters, aspect and side-to-thickness ratios, porosity coefficients, thermal environment, and FG patterns are investigated through various graphical and numerical results. Our findings declare that the dynamic behavior of the graphene oxide powder reinforced metal foam (GOPRMF) plate remarkably depends on these parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Magnucki K, Stasiewicz P. Elastic buckling of a porous beam. J Theor Appl Mech. 2004;42:859–68.

    Google Scholar 

  2. Smith B, Szyniszewski S, Hajjar J, Schafer B, Arwade S. Steel foam for structures: a review of applications, manufacturing and material properties. J Constr Steel Res. 2012;71:1–10.

    Article  Google Scholar 

  3. Chen D, Yang J, Kitipornchai S. Free and forced vibrations of shear deformable functionally graded porous beams. Int J Mech Sci. 2016;108:14–22.

    Article  Google Scholar 

  4. Jabbari M, Mojahedin A, Khorshidvand A, Eslami M. Buckling analysis of a functionally graded thin circular plate made of saturated porous materials. J Eng Mech. 2014;140:287–95.

    Article  Google Scholar 

  5. Rezaei A, Saidi A. Application of Carrera Unified Formulation to study the effect of porosity on natural frequencies of thick porouS-Cellular plates. Compos B Eng. 2016;91:361–70.

    Article  Google Scholar 

  6. Wang YQ, Liang C, Zu JW. Examining wave propagation characteristics in metal foam beams: Euler–Bernoulli and Timoshenko models. J Braz Soc Mech Sci Eng. 2018;40:565.

    Article  Google Scholar 

  7. Jasion P, Magnucka-Blandzi E, Szyc W, Magnucki K. Global and local buckling of sandwich circular and beam-rectangular plates with metal foam core. Thin-Walled Struct. 2012;61:154–61.

    Article  Google Scholar 

  8. Liu J, He S, Zhao H, Li G, Wang M. Experimental investigation on the dynamic behaviour of metal foam: from yield to densification. Int J Impact Eng. 2018;114:69–77.

    Article  Google Scholar 

  9. T. Belica, M. Malinowski, K. Magnucki, Dynamic stability of an isotropic metal foam cylindrical shell subjected to external pressure and axial compression, J Appl Mech, 78 (2011).

  10. E. Arshid, S. Amir, A. Loghman, Static and dynamic analyses of FG-GNPs reinforced porous nanocomposite annular micro-plates based on MSGT, Int J Mech Sci, (2020) 105656.

  11. Cong PH, Chien TM, Khoa ND, Duc ND. Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy’s HSDT. Aerosp Sci Technol. 2018;77:419–28.

    Article  Google Scholar 

  12. Arshid E, Khorshidvand AR, Khorsandijou SM. The effect of porosity on free vibration of SPFG circular plates resting on visco-Pasternak elastic foundation based on CPT FSDT and TSDT. Struct Eng Mech. 2019;70:97–112.

    Google Scholar 

  13. Nguyen LB, Thai CH, Zenkour A, Nguyen-Xuan H. An isogeometric Bézier finite element method for vibration analysis of functionally graded piezoelectric material porous plates. Int J Mech Sci. 2019;157:165–83.

    Article  Google Scholar 

  14. Chandrasekaran S, Sato N, Tölle F, Mülhaupt R, Fiedler B, Schulte K. Fracture toughness and failure mechanism of graphene based epoxy composites. Compos Sci Technol. 2014;97:90–9.

    Article  CAS  Google Scholar 

  15. Formica G, Lacarbonara W, Alessi R. Vibrations of carbon nanotube-reinforced composites. J Sound Vib. 2010;329:1875–89.

    Article  ADS  Google Scholar 

  16. Alibeigloo A, Emtehani A. Static and free vibration analyses of carbon nanotube-reinforced composite plate using differential quadrature method. Meccanica. 2015;50:61–76.

    Article  MathSciNet  Google Scholar 

  17. Zhu P, Lei Z, Liew KM. Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Compos Struct. 2012;94:1450–60.

    Article  Google Scholar 

  18. Wattanasakulpong N, Ungbhakorn V. Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation. Comput Mater Sci. 2013;71:201–8.

    Article  CAS  Google Scholar 

  19. Shen H-S, Xiang Y. Postbuckling of axially compressed nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments. Compos B Eng. 2014;67:50–61.

    Article  CAS  Google Scholar 

  20. Heshmati M, Yas M, Daneshmand F. A comprehensive study on the vibrational behavior of CNT-reinforced composite beams. Compos Struct. 2015;125:434–48.

    Article  Google Scholar 

  21. Lei Z, Zhang L, Liew K. Free vibration analysis of laminated FG-CNT reinforced composite rectangular plates using the kp-Ritz method. Compos Struct. 2015;127:245–59.

    Article  Google Scholar 

  22. Zhang L, Liew K, Reddy J. Postbuckling analysis of bi-axially compressed laminated nanocomposite plates using the first-order shear deformation theory. Compos Struct. 2016;152:418–31.

    Article  Google Scholar 

  23. H. Chen, H. Song, Y. Li, M. Safarpour, Hygro-thermal buckling analysis of polymer–CNT–fiber-laminated nanocomposite disk under uniform lateral pressure with the aid of GDQM, Eng Comput, (2020) 1–25.

  24. N.D. Dat, T.Q. Quan, N.D. Duc, Nonlinear thermal vibration of carbon nanotube polymer composite elliptical cylindrical shells, International J Mech Mater Des, (2019) 1–20.

  25. Song Z, Zhang L, Liew K. Dynamic responses of CNT reinforced composite plates subjected to impact loading. Compos B Eng. 2016;99:154–61.

    Article  CAS  Google Scholar 

  26. Ansari R, Torabi J, Shojaei MF. Buckling and vibration analysis of embedded functionally graded carbon nanotube-reinforced composite annular sector plates under thermal loading. Compos B Eng. 2017;109:197–213.

    Article  CAS  Google Scholar 

  27. Garcia-Macias E, Rodriguez-Tembleque L, Saez A. Bending and free vibration analysis of functionally graded graphene vs. carbon nanotube reinforced composite plates. Compos Struct. 2018;186:123–38.

    Article  Google Scholar 

  28. Pourasghar A, Chen Z. Hyperbolic heat conduction and thermoelastic solution of functionally graded CNT reinforced cylindrical panel subjected to heat pulse. Int J Solids Struct. 2019;163:117–29.

    Article  CAS  Google Scholar 

  29. Ke L-L, Yang J, Kitipornchai S. Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams. Compos Struct. 2010;92:676–83.

    Article  Google Scholar 

  30. Chatterjee S, Nafezarefi F, Tai N, Schlagenhauf L, Nüesch F, Chu B. Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon. 2012;50:5380–6.

    Article  CAS  Google Scholar 

  31. Yadav SK, Cho JW. Functionalized graphene nanoplatelets for enhanced mechanical and thermal properties of polyurethane nanocomposites. Appl Surf Sci. 2013;266:360–7.

    Article  CAS  ADS  Google Scholar 

  32. Yang J, Wu H, Kitipornchai S. Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Compos Struct. 2017;161:111–8.

    Article  Google Scholar 

  33. Duc ND, Seung-Eock K, Chan DQ. Thermal buckling analysis of FGM sandwich truncated conical shells reinforced by FGM stiffeners resting on elastic foundations using FSDT. J Therm Stress. 2018;41:331–65.

    Article  Google Scholar 

  34. Sobhy M. An accurate shear deformation theory for vibration and buckling of FGM sandwich plates in hygrothermal environment. Int J Mech Sci. 2016;110:62–77.

    Article  Google Scholar 

  35. Song M, Kitipornchai S, Yang J. Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos Struct. 2017;159:579–88.

    Article  Google Scholar 

  36. Feng C, Kitipornchai S, Yang J. Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs). Compos B Eng. 2017;110:132–40.

    Article  CAS  Google Scholar 

  37. Barati MR, Zenkour AM. Post-buckling analysis of refined shear deformable graphene platelet reinforced beams with porosities and geometrical imperfection. Compos Struct. 2017;181:194–202.

    Article  Google Scholar 

  38. Liu D, Kitipornchai S, Chen W, Yang J. Three-dimensional buckling and free vibration analyses of initially stressed functionally graded graphene reinforced composite cylindrical shell. Compos Struct. 2018;189:560–9.

    Article  Google Scholar 

  39. Shen H-S, Xiang Y, Fan Y, Hui D. Nonlinear bending analysis of FG-GRC laminated cylindrical panels on elastic foundations in thermal environments. Compos B Eng. 2018;141:148–57.

    Article  CAS  Google Scholar 

  40. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS. Graphene-based polymer nanocomposites. Polymer. 2011;52:5–25.

    Article  CAS  Google Scholar 

  41. Mahkam M, Rafi AA, Faraji L, Zakerzadeh E. Preparation of poly (methacrylic acid)–graphene oxide nanocomposite as a pH-sensitive drug carrier through in-situ copolymerization of methacrylic acid with polymerizable graphene. Polym-Plast Technol Eng. 2015;54:916–22.

    Article  CAS  Google Scholar 

  42. Gómez-Navarro C, Burghard M, Kern K. Elastic properties of chemically derived single graphene sheets. Nano Lett. 2008;8:2045–9.

    Article  PubMed  ADS  Google Scholar 

  43. Tang L-C, Wan Y-J, Yan D, Pei Y-B, Zhao L, Li Y-B, Wu L-B, Jiang J-X, Lai G-Q. The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon. 2013;60:16–27.

    Article  CAS  Google Scholar 

  44. Zhang Z, Li Y, Wu H, Zhang H, Wu H, Jiang S, Chai G. Mechanical analysis of functionally graded graphene oxide-reinforced composite beams based on the first-order shear deformation theory. Mech Adv Mater Struct. 2020;27:3–11.

    Article  CAS  Google Scholar 

  45. Ebrahimi F, Nouraei M, Dabbagh A. Modeling vibration behavior of embedded graphene-oxide powder-reinforced nanocomposite plates in thermal environment. Mech Based Des Struct Mach. 2020;48:217–40.

    Article  Google Scholar 

  46. Ebrahimi F, Nouraei M, Dabbagh A. Thermal vibration analysis of embedded graphene oxide powder-reinforced nanocomposite plates. Eng Comput. 2020;36:879–95.

    Article  Google Scholar 

  47. Bakshi SR, Lahiri D, Agarwal A. Carbon nanotube reinforced metal matrix composites-a review. Int Mater Rev. 2010;55:41–64.

    Article  CAS  Google Scholar 

  48. M. Van Es, Polymer-clay nanocomposites, Delft: PhD Thesis, (2001).

  49. Wang YQ, Zu JW. Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment. Aerosp Sci Technol. 2017;69:550–62.

    Article  Google Scholar 

  50. Yang J, Chen D, Kitipornchai S. Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method. Compos Struct. 2018;193:281–94.

    Article  Google Scholar 

  51. Sobhy M. Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions. Compos Struct. 2013;99:76–87.

    Article  ADS  Google Scholar 

  52. Xue Y, Jin G, Ma X, Chen H, Ye T, Chen M, Zhang Y. Free vibration analysis of porous plates with porosity distributions in the thickness and in-plane directions using isogeometric approach. Int J Mech Sci. 2019;152:346–62.

    Article  Google Scholar 

  53. Mahi A, Tounsi A. A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates. Appl Math Model. 2015;39:2489–508.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This research is financially supported by the Ministry of Science and Technology of China (Grant No. 2019YFE0112400), the Taishan Scholar Priority Discipline Talent Group program funded by the Shan Dong Province, and the first-class discipline project funded by the Education Department of Shandong Province.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunwei Zhang.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical approval (in case animals were involved)

This article does not contain any studies with animals performed by any of the authors.

Ethical approval (in case humans were involved)

This article does not contain any studies with human participants performed by any of the authors.

Appendix

Appendix

The components of the stiffness matrix are as follows:

$$\begin{aligned} k_{11} & = A_{11} r_{1} + A_{66} r_{2} , \, k_{12} = (A_{12} + A_{66} )r_{2} , \, \hfill \\ k_{13} &= - B_{11} r_{1} - (B_{11} + 2B_{66} )r_{2}, \,\\ k_{14} &= - B_{11}^{s} r_{1} - (B_{11}^{s} + 2B_{66}^{s} )r_{2} , \, \\ k_{21} &= (A_{12} + A_{66} )r_{3} , \, k_{22} = A_{22} r_{4} + A_{66} r_{3} \hfill \\ k_{23} &= - B_{22} r_{4} - (B_{12} + 2B_{66} )r_{3} , \,\\ k_{24} & = - B_{22}^{s} r_{4} - (B_{12}^{s} + 2B_{66}^{s} )r_{1} \hfill \\ k_{31} &= B_{11} r_{5} + (B_{12} + 2B_{66} )r_{6} , \,\\ k_{32} & = B_{22} r_{7} + (B_{12} + 2B_{66} )r_{6} \hfill \\ k_{33} &= - D_{11} r_{5} - 2(D_{12} + 2D_{66} )r_{6} \hfill \\&\quad- D_{22} r_{7} - k_{w} r_{8} + (k_{p} - N_{T} )(r_{10} + r_{9} ) \hfill \\ k_{34} & = - D_{11}^{s} r_{5} - 2(D_{12}^{s} + 2D_{66}^{s} )r_{6} \hfill \\&\quad - D_{22}^{s} r_{7} - k_{w} r_{8} + (k_{p} - N_{T} )(r_{10} + r_{9} ) \hfill \\ k_{41} & = B_{11}^{s} r_{5} + (B_{11}^{s} + 2B_{66}^{s} )r_{6} , \, \\ k_{42} &= B_{22}^{s} r_{7} + (B_{12}^{s} + 2B_{66}^{s} )r_{6} \hfill \\ k_{43} & = - D_{11}^{s} r_{5} - 2(D_{12}^{s} + 2D_{66}^{s} )r_{6} - D_{22}^{s} r_{7} \hfill \\&\quad - k_{w} r_{8} + (k_{p} - N_{T} )(r_{10} + r_{9} ) \hfill \\ k_{44} & = - H_{11}^{s} r_{5} - 2(H_{12}^{s} + 2H_{66}^{s} )r_{6} - H_{22}^{s} r_{7} \hfill \\&\quad - k_{w} r_{8} + (A^{s} + k_{p} - N_{T} )(r_{10} + r_{9} ). \hfill \\ \end{aligned}$$

\(\begin{gathered} m_{11} = I_{0} r_{11} , \, m_{12} = 0, \, m_{13} = - I_{1} r_{11} , \, m_{14} = - J_{1} r_{11} \hfill \\ m_{21} = 0, \, m_{22} = I_{0} r_{12} , \, m_{23} = - I_{1} r_{12} , \, m_{24} = - J_{1} r_{12} \hfill \\ m_{31} = - I_{1} r_{10} , \, m_{32} = I_{1} r_{9} , \, m_{33} = I_{0} r_{8} - I_{2} (r_{10} + r_{9} ) \hfill \\ m_{34} = I_{0} r_{8} + J_{2} (r_{10} + r_{9} ), \, m_{41} = - J_{1} r_{10} , \, m_{42} = J_{1} r_{9} \hfill \\ m_{43} = I_{0} r_{8} - J_{2} (r_{10} + r_{9} ), \, m_{44} = I_{0} r_{8} - K_{2} (r_{10} + r_{9} ) \hfill \\ \end{gathered}\)The components of the mass matrix are defined as

$$\begin{gathered} m_{11} = I_{0} r_{11} , \, m_{12} = 0, \, m_{13} = - I_{1} r_{11} , \, m_{14} = - J_{1} r_{11} \hfill \\ m_{21} = 0, \, m_{22} = I_{0} r_{12} , \, m_{23} = - I_{1} r_{12} , \, m_{24} = - J_{1} r_{12} \hfill \\ m_{31} = - I_{1} r_{10} , \, m_{32} = I_{1} r_{9} , \, m_{33} = I_{0} r_{8} - I_{2} (r_{10} + r_{9} ) \hfill \\ m_{34} = I_{0} r_{8} + J_{2} (r_{10} + r_{9} ), \, m_{41} = - J_{1} r_{10} , \, m_{42} = J_{1} r_{9} \hfill \\ m_{43} = I_{0} r_{8} - J_{2} (r_{10} + r_{9} ), \, m_{44} = I_{0} r_{8} - K_{2} (r_{10} + r_{9} ). \hfill \\ \end{gathered}$$

Also the nonzero components of the damping matrix are stated as

$$c_{33} = c_{34} = c_{43} = c_{44} = - i\mu r_{8}$$

where

$$\begin{aligned} \left\{ {r_{1} ,r_{2} ,r_{{11}} } \right\} &= \int_{0}^{a} {\int_{0}^{b} {X_{m}^{\prime } } } (x)Y_{n} (y)\left\{ {X_{m}^{{\prime \prime \prime }} (x)Y_{n} (y),}\right.\\&\quad \left.{X_{m}^{\prime } (x)Y_{n}^{{\prime \prime }} (y),X_{m}^{\prime } (x)Y_{n} (y)} \right\}\hfill \\\left\{ {r_{3} ,r_{4} ,r_{{12}} } \right\} &= \int_{0}^{a} {\int_{0}^{b} {X_{m} } } (x)Y_{n}^{\prime } (y)\left\{ {X_{m}^{{\prime \prime }} (x)Y_{n}^{\prime } (y),}\right.\\&\quad \left.{X_{m} (x)Y_{n}^{{\prime \prime \prime }} (y),X_{m} (x)Y_{n}^{\prime } (y)} \right\} \hfill \\ \left\{ {r_{5} ,r_{6} ,r_{7} } \right\} & = \int_{0}^{a} {\int_{0}^{b} {X_{m} } } (x)Y_{n} (y)\left\{ {X_{m}^{{\prime \prime \prime \prime }} (x)Y_{n} (y),}\right.\\&\quad \left.{X_{m}^{{\prime \prime }} (x)Y_{n}^{{\prime \prime }} (y),X_{m} (x)Y_{n}^{{\prime \prime \prime \prime }} {\mkern 1mu} (y)} \right\} \hfill \\ \left\{ {r_{8} ,r_{9} ,r_{{10}} } \right\} &= \int_{0}^{a} {\int_{0}^{b} {X_{m} } } (x)Y_{n} (y)\left\{ {X_{m} (x)Y_{n} (y),}\right.\\&\quad \left.{X_{m} (x)Y_{n}^{{\prime \prime }} (y),X_{m}^{{\prime \prime }} (x)Y_{n} (y)} \right\}. \hfill \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Wang, L., Eyvazian, A. et al. Analytical study of the damping vibration behavior of the metal foam nanocomposite plates reinforced with graphene oxide powders in thermal environments. Archiv.Civ.Mech.Eng 21, 142 (2021). https://doi.org/10.1007/s43452-021-00269-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-021-00269-5

Keywords

Navigation