Skip to main content
Log in

Transient Hygrothermal Analysis of FG Sandwich Plates Lying on a visco-Pasternak Foundation via a Simple and Accurate Plate Theory

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Based on a new four-unknown shear deformation theory, the hygrothermal bending response of functionally graded (FG) sandwich plates lying on visco-Pasternak foundation is investigated in this work. The present sandwich plate is composed of a homogeneous ceramic core covered by two FG layers. The properties of face layers are graded according to a power law distribution in terms of volume fraction. The governing equations are derived from Hamilton principle containing the hygrothermal effects employing the suggested theory. This theory includes only four unknown functions and accounts for quasi-parabolic distribution of transverse shear stress. In addition, it satisfies the free traction conditions at the top and bottom surfaces of the plate. By varying the thickness of the core, several types of FGM sandwich plates are obtained and studied. By comparing the present results with those available in the literature, the present theory is validated. Parametric studies are executed to demonstrate the effects of humidity, temperature rise, foundation coefficients, core thickness, and power law index on the bending of FGM sandwich plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zenkour, A.M.: A comprehensive analysis of functionally graded sandwich plates: part 1, deflection and stresses, part 2-buckling and free vibration. Int. J. Solids Struct 42, 5243–5258 (2005)

    Article  MATH  Google Scholar 

  2. Aksoylar, C.; Ömercikoğlu, A.; Mecitoğlu, Z.; Omurtag, M.H.: Nonlinear transient analysis of FGM and FML plates under blast loads by experimental and mixed FE methods. Compos. Struct. 94(2), 731–744 (2012)

    Article  Google Scholar 

  3. Anderson, T.A.: A 3-D elasticity solution for a sandwich composite with functionally graded core subjected to transverse loading by a rigid sphere. Compos. Struct. 60, 265–274 (2003)

    Article  Google Scholar 

  4. Kirugulige, M.S.; Kitey, R.; Tippur, H.V.: Dynamic fracture behavior of model sandwich structures with functionally graded core: a feasibility study. Compos. Sci. Technol. 65(7), 1052–1068 (2005)

    Article  Google Scholar 

  5. Das, M.; Barut, A.; Madenci, E.; Ambur, D.R.: A triangular plate element for thermo-elastic analysis of sandwich panels with a functionally graded core. Int. J. Numer. Methods Eng. 68, 940–966 (2006)

    Article  MATH  Google Scholar 

  6. Kashtalyan, M.; Menshykova, M.: Three-dimensional elasticity solution for sandwich panels with a functionally graded core. Compos. Struct. 87(1), 36–43 (2009)

    Article  Google Scholar 

  7. Aragh, B.S.; Yas, M.H.: Effect of continuously grading fiber orientation face sheets on vibration of sandwich panels with FGM core. Int. J. Mech. Sci. 53(8), 628–638 (2011)

    Article  Google Scholar 

  8. Dozio, L.: Natural frequencies of sandwich plates with FGM core via variable-kinematic 2-D Ritz models. Compos. Struct. 96, 561–568 (2013)

    Article  Google Scholar 

  9. Alibeigloo, A.; Liew, K.M.: Free vibration analysis of sandwich cylindrical panel with functionally graded core using three-dimensional theory of elasticity. Compos. Struct. 113, 23–30 (2014)

    Article  Google Scholar 

  10. Liu, M.; Cheng, Y.; Liu, J.: High-order free vibration analysis of sandwich plates with both functionally graded face sheets and functionally graded flexible core. Compos. Part B 72, 97–107 (2015)

    Article  Google Scholar 

  11. Li, Q.; Lu, V.; Kou, K.: Three-dimensional vibration analysis of functionally graded material sandwich plates. J. Sound Vib. 311, 498–515 (2008)

    Article  Google Scholar 

  12. Natarajan, S.; Manickam, G.: Bending and vibration of functionally graded material sandwich plates using an accurate theory. Finite Elem. Anal. Des. 57, 32–42 (2012)

    Article  Google Scholar 

  13. Sobhy, M.: Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions. Compos. Struct. 99, 76–87 (2013)

    Article  Google Scholar 

  14. Meziane, M.A.A.; Abdelaziz, H.H.; Tounsi, A.: An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions. J. Sandw. Struct. Mater. 16(3), 293–318 (2014)

    Article  Google Scholar 

  15. Sofiyev, A.H.: The vibration and buckling of sandwich cylindrical shells covered by different coatings subjected to the hydrostatic pressure. Compos. Struct. 117, 124–134 (2014)

    Article  Google Scholar 

  16. Zenkour, A.M.; Allam, M.N.M.; Sobhy, M.: Bending analysis of FG viscoelastic sandwich beams with elastic cores resting on Pasternak’s elastic foundations. Acta Mech. 212(3–4), 233–252 (2010)

    Article  MATH  Google Scholar 

  17. Zenkour, A.M.; Sobhy, M.: Elastic foundation analysis of uniformly loaded functionally graded viscoelastic sandwich plates. J. Mech. 28(3), 439–452 (2012)

    Article  Google Scholar 

  18. Thai, H.T.; Nguyen, T.K.; Vo, T.P.; Lee, J.: Analysis of functionally graded sandwich plates using a new first-order shear deformation theory. Eur. J. Mech. A Solids 45, 211–225 (2014)

    Article  MathSciNet  Google Scholar 

  19. Allahverdizadeh, A.; Mahjoob, M.J.; Eshraghi, I.; Nasrollahzadeh, N.: On the vibration behavior of functionally graded electrorheological sandwich beams. Int. J. Mech. Sci. 70, 130–139 (2013)

    Article  Google Scholar 

  20. Sobhy, M.: An accurate shear deformation theory for vibration and buckling of FGM sandwich plates in hygrothermal environment. Int. J. Mech. Sci. 110, 62–77 (2016)

    Article  Google Scholar 

  21. Shen, H.S.; Li, S.R.: Postbuckling of sandwich plates with FGM face sheets and temperature-dependent properties. Compos. Part B 39(2), 332–344 (2008)

    Article  Google Scholar 

  22. El Meiche, N.; Tounsi, A.; Ziane, N.; Mechab, I.: A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate. Int. J. Mech. Sci. 53(4), 237–247 (2011)

    Article  Google Scholar 

  23. Bourada, M.; Tounsi, A.; Houari, M.S.A.; Bedia, E.A.: A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates. J. Sandw. Struct. Mater. 14(1), 5–33 (2012)

    Article  Google Scholar 

  24. Tounsi, A.; Houari, M.S.A.; Benyoucef, S.; Adda Bedia, E.A.: A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates. Aerosp. Sci. Technol. 24(1), 209–220 (2013)

    Article  Google Scholar 

  25. Zenkour, A.M.: The effect of transverse shear and normal deformations on the thermomechanical bending of functionally graded sandwich plates. Int. J. Appl. Mech. 1(04), 667–707 (2009)

    Article  Google Scholar 

  26. Zenkour, A.M.: Bending analysis of functionally graded sandwich plates using a simple four-unknown shear and normal deformations theory. J. Sandw. Struct. Mater. 15(6), 629–656 (2013)

    Article  MathSciNet  Google Scholar 

  27. Zenkour, A.M.: On the magneto-thermo-elastic responses of FG annular sandwich disks. Int. J. Eng. Sci. 75, 54–66 (2014)

    Article  Google Scholar 

  28. Mahi, A.; Bedia, E.A.; Tounsi, A.: A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates. Appl. Math. Model. 39(9), 2489–2508 (2015)

    Article  MathSciNet  Google Scholar 

  29. Sobhy, M.; Zenkour, A.M.: Thermodynamical bending of FGM sandwich plates resting on Pasternak’s elastic foundations. Adv. Appl. Math. Mech. 7(01), 116–134 (2015)

    Article  MathSciNet  Google Scholar 

  30. Psycharis, I.N.: Investigation of the dynamic response of rigid footings on tensionless Winkler foundation. Soil Dyn. Earthq. Eng. 28, 577–591 (2008)

    Article  Google Scholar 

  31. Gupta, U.S.; Ansari, A.H.; Sharma, S.: Buckling and vibration of polar orthotropic circular plate resting on Winkler foundation. J. Sound Vib. 297, 457–476 (2006)

    Article  MATH  Google Scholar 

  32. Pasternak, P.L.: On a new method of analysis of an elastic foundation by means of two foundation constants. Gosudarstvennoe Izdatelstvo Literaturipo Stroitelstvu I Arkhitekture, Moscow, USSR, vol. 1, pp. 1–56 (1954) (in Russian)

  33. Civalek, O.; Acar, M.H.: Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations. Int. J. Press. Vessels Pip. 84, 527–535 (2007)

    Article  Google Scholar 

  34. Hashemi, S.H.; Taher, H.R.D.; Omidi, M.: 3-D free vibration analysis of annular plates on Pasternak elastic foundation via p-Ritz method. J. Sound Vib. 311, 1114–1140 (2008)

    Article  Google Scholar 

  35. Zenkour, A.M.; Sobhy, M.: Nonlocal elasticity theory for thermal buckling of nanoplates lying on Winkler–Pasternak elastic substrate medium. Physica E 53, 251–259 (2013)

    Article  Google Scholar 

  36. Sobhy, M.: Thermomechanical bending and free vibration of single-layered graphene sheets embedded in an elastic medium. Physica E 56, 400–409 (2014)

    Article  Google Scholar 

  37. Sobhy, M.: A comprehensive study on FGM nanoplates embedded in an elastic medium. Compos. Struct. 134, 966–980 (2015)

    Article  Google Scholar 

  38. Sobhy, M.: Natural frequency and buckling of orthotropic nanoplates resting on two-parameter elastic foundations with various boundary conditions. J. Mech. 30(5), 443–453 (2014)

    Article  Google Scholar 

  39. Özçelikörs, Y.; Omurtag, M.H.; Demir, H.: Analysis of orthotropic plate-foundation interaction by mixed finite element formulation using Gâteaux differential. Comput. Struct. 62(1), 93–106 (1997)

    Article  MATH  Google Scholar 

  40. Arani, A.G.; Shiravand, A.; Rahi, M.; Kolahchi, R.: Nonlocal vibration ofcoupled DLGS systems embedded on visco-Pasternak foundation. Phys. B Condens. Matter 407(21), 4123–4131 (2012)

    Article  Google Scholar 

  41. Arani, A.G.; Roudbari, M.A.: Nonlocal piezoelastic surface effect on the vibration of visco-Pasternak coupled boron nitride nanotube system under a moving nanoparticle. Thin Solid Films 542, 232–241 (2013)

    Article  Google Scholar 

  42. Hashemi, S.H.; Mehrabani, H.; Ahmadi-Savadkoohi, A.: Exact solution for free vibration of coupled double viscoelastic graphene sheets by viscoPasternak medium. Compos. Part B 78, 377–383 (2015)

    Article  Google Scholar 

  43. Arani, A.G.; Jalaei, M.H.: Transient behavior of an orthotropic graphene sheet resting on orthotropic visco-Pasternak foundation. Int. J. Eng. Sci. 103, 97–113 (2016)

    Article  MathSciNet  Google Scholar 

  44. Zenkour, A.M.: Nonlocal transient thermal analysis of a single-layered graphene sheet embedded in viscoelastic medium. Physica E 79, 87–97 (2016)

    Article  Google Scholar 

  45. Reddy, J.N.: A simple higher-order theory for laminated composite plates. J. Appl. Mech. 51, 745–752 (1984)

    Article  MATH  Google Scholar 

  46. Touratier, M.: An efficient standard plate theory. Int. J. Eng. Sci. 29(8), 901–916 (1991)

    Article  MATH  Google Scholar 

  47. Soldatos, K.P.: A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mech. 94, 195–220 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  48. Karama, M.; Afaq, K.S.; Mistou, S.: Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity. Int. J. Solids Struct. 40(6), 1525–1546 (2003)

    Article  MATH  Google Scholar 

  49. Aydogdu, M.: A new shear deformation theory for laminated composite plates. Compos. Struct. 89, 94–101 (2009)

    Article  Google Scholar 

  50. Başar, Y.; Omurtag, M.H.: Free-vibration analysis of thin/thick laminated structures by layer-wise shell models. Comput. Struct. 74(4), 409–427 (2000)

    Article  Google Scholar 

  51. Shimpi, R.P.: Refined plate theory and its variants. AIAA J. 40(1), 137–146 (2002)

    Article  Google Scholar 

  52. Benachour, A.; Tahar, H.D.; Atmane, H.A.; Tounsi, A.; Ahmed, M.S.: A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient. Compos. Part B 42, 1386–1394 (2011)

    Article  Google Scholar 

  53. Thai, H.T.; Vo, T.P.: A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates. Appl. Math. Model. 37(5), 3269–3281 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  54. Mahi, A.; Tounsi, A.: A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates. Appl. Math. Model. 39(9), 2489–2508 (2015)

    Article  MathSciNet  Google Scholar 

  55. Srinivas, S.: Three dimensional analysis of some plates and laminates and a study of thickness effects. Ph.D. Thesis, Department of Aeronautical Engineering, Indian Institute of Science, Bangalore, India (1970)

  56. Zenkour, A.M.; Alghamdi, N.A.: Thermoelastic bending analysis of functionally graded sandwich plates. J. Mater. Sci. 43(8), 2574–2589 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Sobhy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobhy, M., Alotebi, M.S. Transient Hygrothermal Analysis of FG Sandwich Plates Lying on a visco-Pasternak Foundation via a Simple and Accurate Plate Theory. Arab J Sci Eng 43, 5423–5437 (2018). https://doi.org/10.1007/s13369-018-3142-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3142-1

Keywords

Navigation