Skip to main content
Log in

Logical stochastic resonance in a nonlinear fractional-order system

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We investigate logical stochastic resonance (LSR) in a nonlinear fractional-order system with an asymmetric bistable potential function. We use the success probability of the logical output to measure the logical operation ability of the system. If the success probability is 1, the logical output presents reliable LSR completely. When there are only two logical signals existing in the excitation, LSR can be realized by varying the value of the fractional order or the bias of the potential function. If the fractional order is relatively large, the system performs correct logical operations more easily. With the increase in the bias, the interval of the fractional order corresponding to LSR increases first and then decreases. When both logical signals and Gaussian white noise exist in the excitation, the intervals of the fractional order and the bias corresponding to LSR decrease with the increase in the noise intensity. In addition, with the increase in the value of the fractional order, the maximal value of the success probability also increases. Further, the system usually performs more accurate logical operations when the value of the fractional order lies in the interval [1, 1.5]. The results expand the achievements of LSR. They also provide a reference in choosing an optimal system of LSR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Benzi, A. Sutera, A. Vulpiani, J. Phys. A: Math. Gen. 14, L453 (1981)

    ADS  Google Scholar 

  2. F. Marino, M. Giudici, S. Barland, S. Balle, Phys. Rev. Lett. 88, 040601 (2002)

    ADS  Google Scholar 

  3. H.T. Yu, J. Wang, J.W. Du, B. Deng, X.L. Wei, C. Liu, Chaos 23, 013128 (2013)

    ADS  MathSciNet  Google Scholar 

  4. D. Mondal, M. Muthukumar, J. Chem. Phys. 144, 144901 (2016)

    ADS  Google Scholar 

  5. S. Fauve, F. Heslot, Phys. Lett. A 97, 5 (1983)

    ADS  Google Scholar 

  6. K. Murali, S. Sinha, W.L. Ditto, A.R. Bulsara, Phys. Rev. Lett. 102, 104101 (2009)

    ADS  Google Scholar 

  7. K. Murali, I. Rajamohamed, S. Sinha, W.L. Ditto, A.R. Bulsara, Appl. Phys. Lett. 95, 194102 (2009)

    ADS  Google Scholar 

  8. A. Dari, B. Kia, A.R. Bulsara, W.L. Ditto, Chaos 21, 047521 (2011)

    ADS  Google Scholar 

  9. A. Dari, B. Kia, A.R. Bulsara, W.L. Ditto, Europhys. Lett. 93, 18001 (2011)

    ADS  Google Scholar 

  10. N. Wang, A.G. Song, IEEE Trans. Neural Netw. 27, 2736 (2015)

    Google Scholar 

  11. J. Wu, Y. Xu, H.Y. Wang, J. Kurths, Chaos 27, 063105 (2017)

    ADS  MathSciNet  Google Scholar 

  12. D.N. Guerra, A.R. Bulsara, W.L. Ditto, S. Sinha, K. Murali, P. Mohanty, Nano Lett. 10, 1168 (2010)

    ADS  Google Scholar 

  13. W.L. Ditto, P. Mohanty, S. Sinha, A.R. Bulsara, D.N. Guerra, K. Murali, Noise-Assisted Reprogrammable Nanomechanical Logic Gate and Method, vol. 8436637 (U.S. Patent and Trademark Office, Washington, 2013)

    Google Scholar 

  14. A.R. Bulsara, A. Dari, W.L. Ditto, K. Murali, S. Sinha, Chem. Phys. 375, 424 (2010)

    Google Scholar 

  15. P.R. Venkatesh, A. Venkatesan, Commun. Nonlinear Sci. Numer. Simul. 39, 271 (2016)

    ADS  MathSciNet  Google Scholar 

  16. G.C. Lizeth, T. Asai, M. Motomura, Nolta. IECE 5, 445 (2014)

    Google Scholar 

  17. W.L. Ditto, K. Murali, S. Sinha, A.R. Bulsara, Reconfigurable and Reliable Logic Circuit Elements that Exploit Nonlinearity and Noise, vol. 7924059 (U.S. Patent and Trademark Office, Washington, 2011)

    Google Scholar 

  18. A. Dari, B. Kia, X. Wang, A.R. Bulsara, W.L. Ditto, Phys. Rev. E 83, 041909 (2011)

    ADS  Google Scholar 

  19. E.H. Hellen, S.K. Dana, J. Kurths, E. Kehler, S. Sinha, Plos One 8, e76032 (2013)

    ADS  Google Scholar 

  20. A. Sharma, V. Kohar, M.D. Shrimali, S. Sinha, Nonlinear Dyn. 76, 431 (2014)

    Google Scholar 

  21. W.L. Ditto, A.R. Bulsara, A. Dari, B. Kia, Morphable Logic Gates Using Logical Stochastic Resonance in an Engineered Gene Network, vol. 9043158 (U.S. Patent and Trademark Office, Washington, 2015)

    Google Scholar 

  22. S. Sinha, J.M. Cruz, T. Buhse, P. Parmananda, Europhys. Lett. 86, 60003 (2009)

    ADS  Google Scholar 

  23. J. Zamoramunt, C. Masoller, Opt. Express 18, 16418 (2010)

    ADS  Google Scholar 

  24. K.P. Singh, S. Sinha, Phys. Rev. E 83, 046219 (2011)

    ADS  Google Scholar 

  25. V. Kohar, S. Sinha, Phys. Lett. A 376, 957 (2012)

    ADS  Google Scholar 

  26. N. Wang, B. Zheng, H.Y. Zheng, B. Yang, Nonlinear Dyn. 94, 295 (2018)

    Google Scholar 

  27. K. Murali, S. Sinha, V. Kohar, B. Kia, W.L. Ditto, Plos One 13, e0209037 (2018)

    Google Scholar 

  28. H.Q. Zhang, T.T. Yang, W. Xu, Y. Xu, Nonlinear Dyn. 76, 649 (2014)

    Google Scholar 

  29. H.Q. Zhang, Y. Xu, W. Xu, X.C. Li, Chaos 22, 043130 (2012)

    ADS  MathSciNet  Google Scholar 

  30. R. Storni, H. Ando, K. Aihara, K. Murali, S. Sinha, Phys. Lett. A 376, 930 (2012)

    ADS  Google Scholar 

  31. H. Wu, H.J. Jiang, Z.H. Hou, Chin. J. Chem. Phys. 25, 70 (2012)

    Google Scholar 

  32. K. Murali, S. Sinha, Phys. Lett. A 382, 1581 (2018)

    ADS  MathSciNet  Google Scholar 

  33. B. Kia, K. Murali, M.R.J. Motlagh, S. Sinha, W.L. Ditto, International Conference on Theory and Application in Nonlinear Dynamics (Springer, Washington, 2014), p. 51

    Google Scholar 

  34. L. Zhang, A.G. Song, J. He, Phys. Rev. E 82, 051106 (2010)

    ADS  Google Scholar 

  35. N. Wang, A.G. Song, Eur. Phys. J. B 87, 117 (2014)

    ADS  Google Scholar 

  36. L. Zhang, A.G. Song, J. He, Eur. Phys. J. B 80, 147 (2011)

    ADS  Google Scholar 

  37. Y. Xu, X.Q. Jin, H.Q. Zhang, T.T. Yang, J. Stat. Phys. 152, 753 (2013)

    ADS  MathSciNet  Google Scholar 

  38. A. Gupta, A. Sohane, V. Kohar, K. Murali, S. Sinha, Phys. Rev. E 84, 055201 (2011)

    ADS  Google Scholar 

  39. M. Das, H. Kantz, Phys. Rev. E 100, 032108 (2019)

    ADS  Google Scholar 

  40. N. Wang, A.G. Song, Neurocomputing 155, 80 (2015)

    Google Scholar 

  41. V. Kohar, K. Murali, S. Sinha, Commun. Nonlinear Sci. Numer. Simul. 19, 2866 (2014)

    ADS  MathSciNet  Google Scholar 

  42. N. Wang, A.G. Song, B. Yang, Eur. Phys. J. B 90, 117 (2017)

    ADS  Google Scholar 

  43. D.X. Yang, F.S. Gu, G.J. Feng, Y.M. Yang, B. Andrew, Chin. Phys. B 24, 110502 (2015)

    ADS  Google Scholar 

  44. S. Hu, Y.Q. Chen, T.S. Qiu, Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications (Springer, London, 2011)

    MATH  Google Scholar 

  45. J.H. Yang, M.A.F. Sanjuán, H.G. Liu, G. Cheng, J. Comput. Nonlinear Dyn. 10, 061017 (2015)

    Google Scholar 

  46. J.H. Yang, M.A.F. Sanjuán, H.G. Liu, G. Litak, X. Li, Commun. Nonlinear Sci. Numer. Simul. 41, 104 (2016)

    ADS  MathSciNet  Google Scholar 

  47. J.H. Yang, H. Zhu, Chaos 22, 013112 (2012)

    ADS  MathSciNet  Google Scholar 

  48. Y.J. Shen, P. Wei, S.P. Yang, Nonlinear Dyn. 77, 1629 (2014)

    Google Scholar 

  49. L.C. Chen, H.F. Li, Z.S. Li, W. Zhu, Sci. China-Phys. Mech. Astron. 55, 2284 (2012)

    ADS  Google Scholar 

  50. Y.J. Zheng, Z.X. Zhu, Q. Huang, W.J. Li, Rev. Tec. Fac. Ing. Univ. 31, 1 (2016)

    Google Scholar 

  51. I. Petráš, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation (Higher Education Press, Beijing, 2011)

    MATH  Google Scholar 

  52. C.A. Monje, Y.Q. Chen, B.M. Vinagre, D. Xue, V. Feliu, Fractional-Order Systems and Controls: Fundamentals and Applications (Springer-Verlag, London, 2010)

    MATH  Google Scholar 

  53. W.Q. Zhu, Random Vibration (Science Press, Beijing, 1992), p. 371

    Google Scholar 

Download references

Acknowledgements

We acknowledge financial support by the National Natural Science Foundation of China (Grant No. 11672325), the Priority Academic Program Development of Jiangsu Higher Education Institutions and the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, M., Yang, J., Shi, S. et al. Logical stochastic resonance in a nonlinear fractional-order system. Eur. Phys. J. Plus 135, 747 (2020). https://doi.org/10.1140/epjp/s13360-020-00770-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00770-5

Navigation