Skip to main content
Log in

Traveling Wave Solutions of Some CFD Reaction Duffing and Diffusion–Reaction Equations Arising in Mathematical Physics

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this article, we developed exact solutions of the conformable fractional differential (CFD) generalized reaction Duffing model and conformable nonlinear fractional diffusion–reaction equation (Ö. Güner and A. Bekir in International Journal of Biomathematics 8:1550003, 2015). The duffing type equation is succeeded in explaining many different oscillations in different physical systems and diffusion–reaction equation describe the behavior of a large range of chemical systems. The modified \((G^{\prime } /G^{2} )\)-expansion method has been executed to solving fractional differential equation (FDEs). This method’s key advantage over others is that it provides more broad solutions with some free parameters. These models had applications in biology, fluid mechanics, bio-genetics, population dynamics, bio-mathematics, fractional dynamics, applied mathematics and physics. The suggested constraints conditions in the form of traveling wave transformations to convert CFD equations into the ODEs. The modified \((G^{\prime } /G^{2} )\)-expansion method is applied. As a consequence, some new bright, kink, bright-periodic and singular type of solutions are gained and are verified through MATHEMATICA. The mentioned method is more reliable, applicability and simple as compared to many other methods to solve conformable nonlinear FDEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not Applicable.

References

  1. Güner, Ö., Bekir, A.: Exact solutions of some fractional differential equations arising in mathematical biology. Int. J. Biomath. 8, 1550003 (2015)

    Article  MathSciNet  Google Scholar 

  2. Lu, B.: The first integral method for some time fractional differential equations. J. Math. Anal. Appl. 395, 684–693 (2012)

    Article  MathSciNet  Google Scholar 

  3. K.S Miller, B. Ross: (1993) An introduction to the fractional calculus and fractional differential equations. New York, USA

  4. Gao, G.-H., Sun, Z.-Z., Zhang, Y.-N.: A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions. J. Comput. Phys. 231, 2865–2879 (2012)

    Article  MathSciNet  Google Scholar 

  5. Kadem, A., Kılıçman, A.: Note on transport equation and fractional sumudu transform. Comput. Math. Appl. 62, 2995–3003 (2011)

    Article  MathSciNet  Google Scholar 

  6. Liu, W., Chen, K.: The functional variable method for finding exact solutions of some nonlinear time-fractional differential equations. Pramana 81, 377–384 (2013)

    Article  Google Scholar 

  7. Chen, S., Mihalache, D., Jin, K., Li, J., Rao, J.: Bright solitons in the space-shifted PT-symmetric nonlocal nonlinear Schrödinger equation. Rom. Rep. Phys. 75, 108 (2023)

    Google Scholar 

  8. Mirzazadeh, M., Eslami, M., Biswas, A.: Solitons and periodic solutions to a couple of fractional nonlinear evolution equations. Pramana 82, 465–476 (2014)

    Article  Google Scholar 

  9. Malomed, B.A., Mihalache, D.: Nonlinear waves in optical and matter-wave media: a topical survey of recent theoretical and experimental results. Rom. J. Phys. 64, 106 (2019)

    Google Scholar 

  10. Wang, G.-W., Liu, X.-Q., Zhang, Y.-Y.: Lie symmetry analysis to the time fractional generalized fifth-order kdv equation. Commun. Nonlinear Sci. Numer. Simul. 18, 2321–2326 (2013)

    Article  MathSciNet  Google Scholar 

  11. Zafar, A., Raheel, M., Ali, K.K., Razzaq, W.: On optical soliton solutions of new hamiltonian amplitude equation via jacobi elliptic functions. Eur. Phys. J. Plus 135, 1–17 (2020)

    Article  Google Scholar 

  12. Wazwaz, A.-M., Alhejaili, W., El-Tantawy, S.A.: New (3+ 1)-dimensional Painlevé integrable extensions of Mikhailov-Novikov-Wang equation: variety of multiple soliton solutions. Rom. J. Phys. 67, 115 (2022)

    Google Scholar 

  13. Bekir, A., Güner, Ö.: Exact solutions of nonlinear fractional differential equations by (g′/g)-expansion method. Chin. Phys. B 22, 110202 (2013)

    Article  Google Scholar 

  14. Bekir, A., Güner, Ö., Cevikel, A.C.: Fractional complex transform and exp-function methods for fractional differential equations. Abstr. Appl. Anal. 2013, 446462 (2013)

    Article  MathSciNet  Google Scholar 

  15. Gazizov, R.K., Kasatkin, A.A., Lukashchuk, S.Y.: Symmetry properties of fractional diffusion equations. Phys. Scr. 2009, 014016 (2009)

    Article  Google Scholar 

  16. Sahadevan, R., Bakkyaraj, T.: Invariant analysis of time fractional generalized burgers and korteweg–de vries equations. J. Math. Anal. Appl. 393, 341–347 (2012)

    Article  MathSciNet  Google Scholar 

  17. Chen, C., Jiang, Y.-L.: Lie group analysis method for two classes of fractional partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 26, 24–35 (2015)

    Article  MathSciNet  Google Scholar 

  18. Odibat, Z., Momani, S.: A generalized differential transform method for linear partial differential equations of fractional order. Appl. Math. Lett. 21, 194–199 (2008)

    Article  MathSciNet  Google Scholar 

  19. Wu, G.-C., Lee, E.W.M.: Fractional variational iteration method and its application. Phys. Lett. A 374, 2506–2509 (2010)

    Article  MathSciNet  Google Scholar 

  20. Jiang, Y.-L., Ding, X.-L.: Nonnegative solutions of fractional functional differential equations. Comput. Math. Appl. 63, 896–904 (2012)

    Article  MathSciNet  Google Scholar 

  21. Zafar, A., Raheel, M., Bekir, A., Razzaq, W.: The conformable space–time fractional fokas–lenells equation and its optical soliton solutions based on three analytical schemes. Int. J. Mod. Phys. B 35, 2150004 (2021)

    Article  MathSciNet  Google Scholar 

  22. Kaplan, M., Bekir, A., Akbulut, A., Aksoy, E.: The modified simple equation method for nonlinear fractional differential equations. Rom. J. Phys. 60, 1374–1383 (2015)

    Google Scholar 

  23. Hariharan, G.: The homotopy analysis method applied to the kolmogorov–petrovskii–piskunov (kpp) and fractional kpp equations. J. Math. Chem. 51, 992–1000 (2013)

    Article  MathSciNet  Google Scholar 

  24. Daftardar-Gejji, V., Bhalekar, S.: Solving multi-term linear and non-linear diffusion–wave equations of fractional order by adomian decomposition method. Appl. Math. Comput. 202, 113–120 (2008)

    MathSciNet  Google Scholar 

  25. Gepreel, K.A.: The homotopy perturbation method applied to the nonlinear fractional kolmogorov–petrovskii–piskunov equations. Appl. Math. Lett. 24, 1428–1434 (2011)

    Article  MathSciNet  Google Scholar 

  26. Bekir, A., Zahran, E.H.M.: New analytical solutions for the reaction-convection-diffusion equation against its numerical solutions. Rom. J. Phys. 68, 107 (2023)

    Google Scholar 

  27. Topsakal, M., Guner, O., Bekir, A., Unsal, O.: Exact solutions of some fractional differential equations by various expansion methods. J. Phys. Conf. Ser. 766, 012035 (2016)

    Article  Google Scholar 

  28. Baleanu, D., Uğurlu, Y., Kilic, B., et al.: Improved (g’/g)-expansion method for the time-fractional biological population model and cahn–hilliard equation. J. Comput. Nonlinear Dyn. 10, 051016 (2015)

    Article  Google Scholar 

  29. Behera, S., Aljahdaly, N.H.: Nonlinear evolution equations and their traveling wave solutions in fluid media by modified analytical method. Pramana—J. Phys. 97, 130 (2023)

    Article  Google Scholar 

  30. Behera, S.: Analysis of traveling wave solutions of two space-time nonlinear fractional differential equations by the first-integral method. Modern Phys. Lett. B 38(04), 2350247 (2024)

    Article  MathSciNet  Google Scholar 

  31. Behera, S.: Dynamical solutions and quadratic resonance of nonlinear perturbed Schrödinger equation. Front. Appl. Math. Stat. 8, 1086766 (2023)

    Article  Google Scholar 

  32. Behera, S., Virdi, J.P.S.: Analytical solutions of some fractional order nonlinear evolution equations by sine-cosine method. Discontin. Nonlinearity Complex. 12(2), 275–286 (2023)

    Article  Google Scholar 

  33. Eslami, M., Vajargah, B.F., Mirzazadeh, M., Biswas, A.: Application of first integral method to fractional partial differential equations. Indian J. Phys. 88, 177–184 (2014)

    Article  Google Scholar 

  34. Jafari, H., Tajadodi, H., Baleanu, D., Al-Zahrani, A., Alhamed, Y., Zahid, A.: Fractional sub-equation method for the fractional generalized reaction duffing model and nonlinear fractional sharma-tasso-olver equation. Open Physics 11, 1482–1486 (2013)

    Article  Google Scholar 

  35. Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    Article  MathSciNet  Google Scholar 

  36. Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)

    Article  MathSciNet  Google Scholar 

  37. Abdeljawad, T., Al Horani, M., Khalil, R.: Conformable fractional semigroups of operators. J. Semigroup Theory Appl. 2015, 7 (2015)

    Google Scholar 

  38. Eslami, M.: Exact traveling wave solutions to the fractional coupled nonlinear schrodinger equations. Appl. Math. Comput. 285, 141–148 (2016)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

Not available.

Author information

Authors and Affiliations

Authors

Contributions

WR: Methodology, conceptualization, software, resources and planning, writing original draft. AZ: Formal analysis and investigation, visualizations, writing original draft. AB: Supervision, project administration, validation review and editing.

Corresponding author

Correspondence to A. Bekir.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

Not applicable.

Consent for Publication

All the authors have agreed and given their consent for the publication of this research paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razzaq, W., Zafar, A. & Bekir, A. Traveling Wave Solutions of Some CFD Reaction Duffing and Diffusion–Reaction Equations Arising in Mathematical Physics. Int. J. Appl. Comput. Math 10, 107 (2024). https://doi.org/10.1007/s40819-024-01738-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-024-01738-0

Keywords

Navigation