Skip to main content
Log in

Excitation of surface plasmon–polariton waves at the interface of a metal and an isotropic chiral material in the prism-coupled configurations

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Excitation of surface plasmon–polariton (SPP) waves guided by the planar interface of a metal and an isotropic chiral material was investigated in the prism-coupled configurations. The characteristics of the SPP waves in both the Turbadar–Kretschmann–Raether configuration and the Turbadar–Otto configuration were studied. The results for SPP-wave excitation in the latter configuration were easily discernible than the former. The associated canonical boundary-value problem was numerically solved for the confirmation of the results of the prism-coupled configurations. It was seen that the SPP waves can exist only if the chirality pseudo-scalar has magnitude that is less than a threshold value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K. Uller, Beiträge zur Theorie der Elektromagnetischen Strahlung, Ph.D. thesis (Universität Rostock, 1903), Chap. XIV, 1903

  2. J. Zenneck, Über die fortpflanzung ebener elektromagnetischer wellen längs einer ebenen lieterfläche und ihre beziehung zur drahtlosen telegraphie. Ann. Phys. Lpz. 328, 846 (1907)

    ADS  MATH  Google Scholar 

  3. A. Sommerfeld, Über die ausbreitung der wellen in derdrahtlosen telegraphie. Ann. Phys. Lpz. 333, 665 (1909)

    ADS  MATH  Google Scholar 

  4. C.J. Bouwkamp, On Sommerfeld’s surface wave. Phys. Rev. 80, 294 (1950)

    ADS  MathSciNet  MATH  Google Scholar 

  5. D.A. Hill, J.-R. Wait, On the excitation of the Zenneck surface wave over the ground at 10 MHz. Ann. Telecommun. 35, 179–182 (1980)

    Google Scholar 

  6. M. Faryad, A. Lakhtakia, Grating-coupled excitation of the Uller–Zenneck surface wave in the optical regime. J. Opt. Soc. Am. B 31, 1706–1711 (2014)

    ADS  Google Scholar 

  7. U. Fano, The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). J. Opt. Soc. Am. 31, 213–222 (1941)

    ADS  Google Scholar 

  8. R.H. Ritchie, Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957)

    ADS  MathSciNet  Google Scholar 

  9. T. Turbadar, Complete absorption of light by thin metal films. Proc. Phys. Soc. 73, 40–44 (1959)

    ADS  Google Scholar 

  10. E. Kretschmann, H. Raether, Radiative decay of non radiative surface plasmons excited by light. Z. Naturforsch. 23, 2135–2136 (1968)

    ADS  Google Scholar 

  11. A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. 216, 398–410 (1968)

    ADS  Google Scholar 

  12. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007)

    Google Scholar 

  13. J.M. Pitarke et al., Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys. 70, 1–87 (2007)

    ADS  Google Scholar 

  14. J. Homola (ed.), Surface Plasmon Resonance Based Sensors (Springer, Berlin, 2006)

    Google Scholar 

  15. E. Hendry et al., Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol. 5, 783–7 (2010)

    ADS  Google Scholar 

  16. A.O. Govorov, Z. Fan, Theory of chiral plasmonic nanostructures comprising metal nanocrystals and chiral molecular media. ChemPhysChem 13, 2551–2560 (2012)

    Google Scholar 

  17. B.D. Gupta, R. Kant, Recent advances in surface plasmon resonance based fiber optic chemical and biosensors utilizing bulk and nanostructures. Opt. Laser Technol. 101, 144–161 (2018)

    ADS  Google Scholar 

  18. M. Schäferling, X. Yin, H. Giessen, Formation of chiral fields in a symmetric environment. Opt. Express 20, 26326–26336 (2012)

    ADS  Google Scholar 

  19. M. Schäferling et al., Helical plasmonic nanostructures as prototypical chiral near-field sources. ACS Photonics 1, 530–537 (2014)

    Google Scholar 

  20. M. Schäferling et al., The role of plasmon-generated near fields for enhanced circular dichroism spectroscopy. ACS Photonics 3, 578–583 (2016)

    Google Scholar 

  21. N.A. Abdulrahman et al., Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures. Nano Lett. 12, 977–983 (2012)

    ADS  Google Scholar 

  22. A.O. Govorov et al., Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects. Nano Lett. 10, 1374–1382 (2010)

    ADS  Google Scholar 

  23. W.M. Mukhtar et al., Electro-optics interaction imaging in active plasmonic devices. Opt. Mater. Express 4, 424–433 (2014)

    ADS  Google Scholar 

  24. N. Engheta, P. Pelet, Surface waves in chiral layers. Opt. Lett. 16, 723–725 (1991)

    ADS  Google Scholar 

  25. T.G. Mackay, A. Lakhtakia, Simultaneous amplification and attenuation in isotropic chiral materials. J. Opt. (UK) 18, 055104 (2016)

    ADS  Google Scholar 

  26. R.D. Kampia, A. Lakhtakia, Bruggeman model for chiral particulate composites. J. Phys. D Appl. Phys. 25, 1390–1394 (1992)

    ADS  Google Scholar 

  27. T.G. Mackay, A. Lakhtakia, Modern Analytical Electromagnetic Homogenization (Morgan & Claypool, San Rafael, 2015)

    MATH  Google Scholar 

  28. J. Noonan, T.G. Mackay, On electromagnetic surface waves supported by an isotropic chiral material. Opt. Commun. 434, 224–229 (2019)

    ADS  Google Scholar 

  29. M. Naheed, M. Faryad, T.G. Mackay, Electromagnetic surface waves guided by the planar interface of isotropic chiral materials. J. Opt. Soc. Am. B 36, F1–F8 (2019)

    Google Scholar 

  30. A. Lakhtakia, V.K. Varadan, V.V. Varadan, Time-Harmonic Electromagnetic Fields in Chiral Media (Springer, Berlin, 1989)

    MATH  Google Scholar 

  31. A. Lakhtakia, Beltrami Fields in Chiral Media (World Scientific, Singapore, 1994)

    Google Scholar 

  32. D.-H. Kwon et al., Material parameter retrieval procedure for general bi-isotropic metamaterials and its application to optical chiral negative-index metamaterial design. Opt. Exp. 16, 11822–11829 (2008)

    ADS  Google Scholar 

  33. D.N. Pattanayak, J.L. Birman, Wave propagation in optically active and magnetoelectric media of arbitrary geometry. Phys. Rev. B 24, 4271–4278 (1981)

    ADS  Google Scholar 

  34. P. Pelet, N. Engheta, Coupled-mode theory for chirowaveguides. J. Appl. Phys. 67, 2742 (1990)

    ADS  MATH  Google Scholar 

  35. N. Engheta, P. Pelet, Modes in chirowaveguides. Opt. Lett. 14, 593–595 (1989)

    ADS  MATH  Google Scholar 

  36. M. Chien, Y. Kim, H. Grebel, Mode conversion in optically active and isotropic waveguides. Opt. Lett. 14, 826–828 (1989)

    ADS  Google Scholar 

  37. P. Pelet, N. Engheta, Chirostrip antenna: line source problem. J. Electromagn. Wave Appl. 6, 771–793 (1992)

    Google Scholar 

  38. D.L. Jaggard, X. Sun, Theory of chiral multilayers. J. Opt. Soc. Am. A 9, 804–813 (1992)

    ADS  Google Scholar 

  39. D.L. Jaggard, N. Engheta, Chirosorb as an invisible medium. Electron. Lett. 25, 173–174 (1989)

    ADS  Google Scholar 

  40. Q. Zhang, J. Li, Characteristics of surface plasmon polaritons in a dielectrically chiral-metal-chiral waveguiding structure. Opt. Lett. 41, 3241–3244 (2016)

    ADS  Google Scholar 

  41. Q. Zhang, J. Li, X. Liu, D.J. Gelmecha, Dispersion, propagation, and transverse spin of surface plasmon polaritons in a metal-chiral-metal waveguide. Appl. Phys. Lett. 110, 161114 (2017)

    ADS  Google Scholar 

  42. M.Z. Yaqoob et al., Hybrid surface plasmon polariton wave generation and modulation by chiral-graphene-metal (CGM) structure. Sci. Rep. 8, 18029 (2018)

    ADS  Google Scholar 

  43. M.Z. Yaqoob et al., Analysis of hybrid surface wave propagation supported by chiral metamaterial-graphene-metamaterial structures. Results Phys. 14, 102378 (2019)

    Google Scholar 

  44. L.D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University Press, New York, 1982)

    Google Scholar 

  45. G. Mi, V. Van, Characteristics of surface plasmon polaritons at a chiral-metal interface. Opt. Lett. 39, 2028–2031 (2014)

    ADS  Google Scholar 

  46. Q. Zhang et al., Optical screwdriving induced by the quantum spin Hall effect of surface plasmons near an interface between strongly chiral material and air. Phys. Rev. A 97, 013822 (2018)

    ADS  Google Scholar 

  47. Q. Zhang, J. Li, X. Liu, Optical lateral forces and torques induced by chiral surface-plasmon-polaritons and their potential applications in recognition and separation of chiral enantiomers. Phys. Chem. Chem. Phys. 21, 1308–1314 (2019)

    Google Scholar 

  48. A.N. Fantino, Planar interface between a chiral medium and a metal: surface wave excitation. J. Mod. Opt. 43, 2581–2593 (1996)

    ADS  Google Scholar 

  49. J.A. Polo Jr., T.G. Mackay, A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective (Elsevier, Amsterdam, 2013)

    Google Scholar 

  50. C.A. Emeis, L.J. Oosterhoff, G. de Vries, Numerical evaluation of Kramers–Kronig relations. Proc. R. Soc. Lond. A 297, 54–65 (1967)

    ADS  Google Scholar 

  51. B.Y.-K. Hu, Kramers–Kronig in two lines. Am. J. Phys. 57, 821 (1989)

    ADS  Google Scholar 

  52. A. Lakhtakia, Comment on ‘Accelerated particle radiation in chiral media’. J. Appl. Phys. 71, 3059–3060 (1992)

    ADS  Google Scholar 

  53. H.C. Chen, Theory of Electromagnetic Waves (McGraw-Hill, NBNew York, 1983)

    Google Scholar 

  54. J.A. Polo Jr., T.G. Mackay, A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective, Chapter 3 (Elsevier, Amsterdam, 2013)

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Tom G. Mackay, University of Edinburgh, for his discussions of SPP waves guided by chiral materials. The authors also thank HEC for partial support of this research through research Grant NRPU 2016-5905.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Faryad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naheed, M., Faryad, M. Excitation of surface plasmon–polariton waves at the interface of a metal and an isotropic chiral material in the prism-coupled configurations. Eur. Phys. J. Plus 135, 724 (2020). https://doi.org/10.1140/epjp/s13360-020-00757-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00757-2

Navigation