Skip to main content
Log in

Temperature-dependent vibrational properties of SbxSn1−xSe2 (x = 0, 0.1, 0.2 & 0.3) ternary alloys

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We report the Raman spectroscopy of SbxSn1−xSe2 (x = 0, 0.1, 0.2, 0.3) single crystals in temperature range 78 K–468 K. The strong peak, assigning A1g-vibrational mode, is found. The frequency of A1g peak decreases on increasing Sb concentration. The downshift is observed on increasing the temperature from 78 to 468 K. For the quantitative analysis, temperature coefficient (χo), peak position at 0 K (ω0), Anharmonic constant (Г0), and peak broadening at 0 K (C) are computed from the temperature dependence of frequency and peak width. The present findings provide a good scientific significance to qualitative and quantitative analyses of transition metal dichalcogenides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P.M. Pataniya, C.K. Zankat, M. Tannarana, A. Patel, S. Narayan, G.K. Solanki, K.D. Patel, P.K. Jha, V.M. Pathak, Mater. Res. Bull. 120, 110602 (2019)

    Article  Google Scholar 

  2. N. Mathews, Sol. Energy 86, 1010 (2012)

    Article  ADS  Google Scholar 

  3. M. Gilic et al., Infrared Phys. Technol. 78, 276 (2016)

    Article  ADS  Google Scholar 

  4. M. Gilic et al., Process. Appl. Ceram. 11, 127 (2017)

    Article  Google Scholar 

  5. J. Wu, H. Schmidt, K.K. Amara, X. Xu, G. Eda, B. Ozyilmaz, Nano Letters 14, 2730 (2014)

    Article  ADS  Google Scholar 

  6. S. Das, H.-Y. Chen, A.V. Penumatcha, J. Appenzeller, Nano Letters 13, 100 (2013)

    Article  ADS  Google Scholar 

  7. H. Wang, L. Yu, Y.-H. Lee, Y. Shi, A. Hsu, M.L. Chin, L.-J. Li, M. Dubey, J. Kong, T. Palacios, Nano Letters 12, 4674 (2012)

    Article  ADS  Google Scholar 

  8. P. Pataniya, C.K. Zankat, M. Tannarana, C.K. Sumesh, S. Narayan, G.K. Solanki, K.D. Patel, V.M. Pathak, P.K. Jha, ACS Appl. Nano Mater. 2, 2758 (2019)

    Article  Google Scholar 

  9. A. Pospischil, M.M. Furchi, T. Mueller, Nat. Nanotechnol. 9, 257 (2014)

    Article  ADS  Google Scholar 

  10. G. Domingo, R.S. Itoga, C.R. Kannewurf, Phys. Rev. 143, 536 (1966)

    Article  ADS  Google Scholar 

  11. A.K. Garg, O.P. Agnihotri, A.K. Jain, R.C. Tyagi, J. Appl. Phys. 47, 997 (1976)

    Article  ADS  Google Scholar 

  12. M.M. El-Nahass, J. Mater. Sci. 27, 6597 (1992)

    Article  ADS  Google Scholar 

  13. P. Yu, X. Yu, W. Lu, D. Wu, H. Lin, L. Sun, K. Du, F. Liu, W. Fu, Q. Zeng, Z. Shen, C. Jin, Q.J. Wang, Z. Liu, Adv. Funct. Mater. 26, 137 (2016)

    Article  Google Scholar 

  14. X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin, H. Li, Y. Bando, D. Golberg, T. Zhai, Adv. Mater. 27, 8035 (2015)

    Article  Google Scholar 

  15. L. Huang, Y. Yu, C. Li, L. Cao, J. Phys. Chem. C 117, 6469 (2013)

    Article  Google Scholar 

  16. M. Tannarana, P. Pataniya, G.K. Solanki, S.B. Pillai, K.D. Patel, P.K. Jha, V.M. Pathak, Appl. Surf. Sci. 462, 856 (2018)

    Article  ADS  Google Scholar 

  17. D.G. Mead, J.C. Irwin, Solid State Commun. 20, 885 (1976)

    Article  ADS  Google Scholar 

  18. C. Pérez-Vicente, C. Julien, Mater. Sci. Eng. B 47, 137 (1997)

    Article  Google Scholar 

  19. A. Taube, A. Łapinska, J. Judek, M. Zdrojek, Appl. Phys. Lett. 107, 013105 (2015)

    Article  ADS  Google Scholar 

  20. I. Calizo, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Nano Letters 7, 2645 (2007)

    Article  ADS  Google Scholar 

  21. D.J. Late, A.C.S. Appl, Mater. Interfaces 7, 5857 (2015)

    Article  Google Scholar 

  22. M. Balkanski, R.F. Wallis, E. Haro, Phys. Rev. B 28, 1928 (1983)

    Article  ADS  Google Scholar 

  23. S.V. Bhatt, M.P. Deshpande, V. Sathe, R. Rao, S.H. Chaki, J. Raman Spectrosc. 45, 971 (2014)

    Article  ADS  Google Scholar 

  24. R.A. Bromley, Philos. Mag. 23, 1417 (1971)

    Article  ADS  Google Scholar 

  25. S. Sahoo, A.P. Gaur, M. Ahmadi, M.J. Guinel, R.S. Katiyar, J. Phys. Chem. C. 117, 9042 (2013)

    Article  Google Scholar 

  26. E.S. Zouboulis, M. Grimsditch, Phys. Rev. B Condens. Matter Mater. Phys. 43, 12490 (1991)

    Article  ADS  Google Scholar 

  27. X. Liu, Z. Li, L. Min, Y. Peng, X. Xiong, Y. Lu, J. Ao, J. Fang, W. He, K. Li, J. Wu, W. Mao, U. Younis, V.D. Botcha, J. Alloy. Compd. 783, 226 (2019)

    Article  Google Scholar 

  28. S. Luo, X. Qi, H. Yao, X. Ren, Q. Chen, J. Zhong, J. Phys. Chem. C 121, 4674 (2017)

    Article  Google Scholar 

  29. A. Łapinnska, A. Taube, J. Judek, M. Zdrojek, J. Phys. Chem. C 120, 5265 (2016)

    Article  Google Scholar 

  30. S. Berciaud, M.Y. Han, K.F. Mak, L.E. Brus, P. Kim, T.F. Heinz, Phys. Rev. Lett. 104, 227401 (2010)

    Article  ADS  Google Scholar 

  31. A.S. Pawbake, M.S. Pawar, S.R. Jadkar, D.J. Late, Nanoscale 8, 3008 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohit Tannarana.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 139 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tannarana, M., Pataniya, P., Solanki, G.K. et al. Temperature-dependent vibrational properties of SbxSn1−xSe2 (x = 0, 0.1, 0.2 & 0.3) ternary alloys. Eur. Phys. J. Plus 135, 97 (2020). https://doi.org/10.1140/epjp/s13360-019-00072-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-019-00072-5

Navigation