Skip to main content
Log in

Theoretical investigation of the structural stabilities, optoelectronic properties and thermodynamic characteristics of GaPxSb1−x ternary alloys

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this theoretical study, we have investigated the structural, phase transition, electronic, thermodynamic and optical properties of GaPxSb1−x ternary alloys. Our calculations are performed with the WIEN2k code based on density functional theory using the full-potential linearized augmented plane wave method. For the electron exchange-correlation potential, a generalized gradient approximation within Wu–Cohen scheme is considered. The recently developed Tran–Blaha modified Becke–Johnson potential has also been used to improve the underestimated band gap. The structural properties, including the lattice constants, the bulk moduli and their pressure derivatives are in very good agreement with the available experimental data and theoretical results. Several structural phase transitions were studied here to establish the stable structure and to predict the phase transition under hydrostatic pressure. The computed transition pressure (Pt) of the material of our interest from the zinc blende (B3) to the rock salt (B1) phase has been determined and found to agree well with the experimental and theoretical data. The calculated band structure shows that GaSb binary compound and the ternary alloys are direct band gap semiconductors. Optical parameters such as the dielectric constants and the refractive indices are calculated and analyzed. The thermodynamic results are also interpreted and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M R Kramers, O B Shchekin, R Mueller-Mach, G O Mueller, L Zhou, G Harbers and MG Craford J . Disp. Technol. 3 160 (2007)

    Article  ADS  Google Scholar 

  2. S Adachi Physical Properties of IIIV Semiconductor Compounds (Wiley) (1992)

  3. O Wada Advances in IIIV Semiconductor photonics: nanostructures and integrated chips Proceedings of the 25th International Conference on Indium Phosphide and Related Materials, IPRM2013, Kobe, Japan, May 19–23(2013)

  4. X F Duan, Y Huang, R Agarwal and CM Lieber Nature 421 241 (2003)

    Article  ADS  Google Scholar 

  5. J Wang, M S Gudiksen, X Duan, Y Cui and CM Lieber Science 293 1455 (2001)

    Google Scholar 

  6. E Lai, W Kim and P Yang Nano Res. 1 123 (2008)

    Article  Google Scholar 

  7. Y Huang, X Duan, Y Cui and CM Lieber Nano Lett. 2 101 (2002)

    Article  ADS  Google Scholar 

  8. M Law, L E Greene, J C Johnson, R Saykally and P Yang Nat. Mater. 4 455 (2005)

    Article  Google Scholar 

  9. H Shimomura, T Anan, S Sugou J. Cryst. Growth 162 121 (1996)

    Article  ADS  Google Scholar 

  10. S Saib and N Bouarissa Solid State Electron. 50 763 (2006).

    Article  ADS  Google Scholar 

  11. D Chen and N M Ravindra J. Mater. Sci. 47 573 (2012).

    Google Scholar 

  12. I Vurgaftman, J R Meyer and L R Ram-Mohan J. Appl. Phys. 89 5815 (2001).

    Article  ADS  Google Scholar 

  13. A Alahmary, N Bouarissa and A Kamli Physica B 403 1990 (2008)

    Article  ADS  Google Scholar 

  14. A Degheidy and E B Elkenany Mater. Chem. Phys. 157 108 (2015)

    Article  Google Scholar 

  15. A Degheidy and E B Elkenany Thin Solid Films 599 113 (2016)

    Article  ADS  Google Scholar 

  16. O K Anderson Phys. Rev. B 42 3060 (1975)

    Article  ADS  Google Scholar 

  17. P Hohenberg, W Kohn Phys. Rev. B 136 864 (1964)

    Article  ADS  Google Scholar 

  18. P Blaha, K Schwarz, G H Madsen, D Kvasnicka and J Luitz, WIEN2K An Augmented Plane Wave Plus Local Orbitals Program For Calculating Crystal Properties, Vienna, Austria, 2008.

    Google Scholar 

  19. Z Wu and R E Cohen Phys. Rev. B 73 235116 (2006)

    Article  ADS  Google Scholar 

  20. F Tran and P Blaha Phys. Rev. Lett. 102 226401 (2009)

    Article  ADS  Google Scholar 

  21. A D Becke and E R Johnson J. Chem. Phys. 124 221101 (2006)

    ADS  Google Scholar 

  22. F D Murnaghan Proc. Natl. Acad. Sci. USA 30 5390 (1944)

    Google Scholar 

  23. S Adachi J. Appl. Phys. 58 (1985) R1.

    Article  ADS  Google Scholar 

  24. F El Haj Hassan, A Breidi, S Ghemid, A Amrani, H Meradji and O Pagès J. Alloys. Compd 499 80 (2010)

    Article  Google Scholar 

  25. S Satyam, S Parashari, S Kumar and S Auluck Physica B 403 3077 (2008)

    Article  ADS  Google Scholar 

  26. O Madelung, M Schulz, Londolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology, Crystal and Solid State Physics, vol. 17a (Berlin: Springer) (1987)

    Google Scholar 

  27. Y Yogurtau, A Miller and G Samders J. Phys. Chem. Solids 42 49 (1981)

    Article  ADS  Google Scholar 

  28. S Kacimi, H Mehnane and A Zaoui J. Alloys. Compd 587 451 (2014)

  29. H Salehietal Mater. Sci. Semicond. Process 26 477 (2014)

    Article  Google Scholar 

  30. M Merabet, S Benalia, D Rached, R Khenata, A Bouhemadou, S Bin Omran, A H Reshak and M Rabah Superlattices Microstruct. 49 132 (2011)

    Article  ADS  Google Scholar 

  31. A Mujica, A Rubio, A Muñoz and R J Needs Rev. Mod. Phys. 75 863 (2003)

    Article  ADS  Google Scholar 

  32. S C Yu, I L Spain and E F Skelton Solid State Commun. 25 49 (1978)

    Article  ADS  Google Scholar 

  33. S Minomura and H G Drickamer J. Phys. Chem. Solids 23 451 (1962)

    Article  ADS  Google Scholar 

  34. Y Al-Douri Optik 123 989 (2012)

    Article  ADS  Google Scholar 

  35. H Salehi, H A Badehian and M Farbod Mater. Sci. Semicond. Process 26 477 (2014)

    Article  Google Scholar 

  36. D Varshney, G Joshi, M Varshney and S Shriya Physica B 405 1663 (2010)

    Article  ADS  Google Scholar 

  37. S Adachi Properties of Group-IV, III-V and II-VI Semiconductors (Japan: Wiley) (2005)

  38. S B Zhang and M L Cohen Phys. Rev. B 35 7604 (1987)

    Article  ADS  Google Scholar 

  39. J R Chelikowsky Phys. Rev. B 35 1174 (1987)

    Article  Google Scholar 

  40. V Ozoliņš and A Zunger Phys. Rev. Lett. 82 767 (1999).

    Article  ADS  Google Scholar 

  41. J C Slated and G F Koster Phys. Rev. 94 1498 (1954)

    Article  ADS  Google Scholar 

  42. G C Hall Philos. Mag. 43 338 (1952)

    Google Scholar 

  43. C A Coulson, L R Redei and D Stocker Proc. Roy. Soc. 270 357 (1962)

    Article  ADS  Google Scholar 

  44. RWG Wyckoff Crystal Structures, 2nd edn. (Malabar: Krieger) (1986)

  45. R Ahmed, Fazal-e-Aleem, S Javad Hashemifar and H Akbarzadeh Physica B 403 1876 (2008)

    Article  ADS  Google Scholar 

  46. B Bouhafs, H Aourag and M Cartier J. Phys.: Condens. Matter 12 5655 (2000)

    ADS  Google Scholar 

  47. R M Wentzcovitch, K J Chang and M L Cohen Phys. Rev. B 34 1071 (1986)

    Article  ADS  Google Scholar 

  48. RA Swalin Thermodynamics of Solids (New York: Wiley) (1961)

  49. L G Ferreira, S H Wei, J E Bernard and A Zunger Phys. Rev. B 40 3197 (1999)

    Article  ADS  Google Scholar 

  50. L K Teles, J Furthmuller, L M R Scolfaro, J R Leite and F Bechstedt Phys. Rev. B 62 2475 (2000)

    Article  ADS  Google Scholar 

  51. I Khan, I Ahmad, H A R Aliabad and M Maqbool J. App. Phys. 112 073104 (2012)

    Article  ADS  Google Scholar 

  52. I Khan and I Ahmad Int. J. Quantum Chem. 113 1285 (2013)

    Article  Google Scholar 

  53. F Birch Phys. Rev. 71 809 (1947)

    Article  ADS  Google Scholar 

  54. Z Ali, I Ahmad, B Amin, M Maqbool, G Murtaza, I Khan, MJ Akhtar and F Ghaffor Physica B 406 3800 (2011)

    Article  ADS  Google Scholar 

  55. Z Ali, I Ahmad, I Khan and B Amin Intermetallics 31 287 (2012)

    Article  Google Scholar 

  56. G Marius Kramers-Kronig relations (The Physics of Semiconductors) (Berlin) (2010)

Download references

Acknowledgements

The authors (Khenata and Bin-Omran) extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this work through Research Group (RGP-1438-88).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Meradji or R. Khenata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oumelaz, F., Nemiri, O., Boumaza, A. et al. Theoretical investigation of the structural stabilities, optoelectronic properties and thermodynamic characteristics of GaPxSb1−x ternary alloys. Indian J Phys 92, 705–714 (2018). https://doi.org/10.1007/s12648-017-1157-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-1157-1

Keywords

PACS Nos.

Navigation